Título: | MATHEMATICAL PROGRAMMING MODELS AND LOCAL SEARCH ALGORITHMS FOR THE OFFSHORE RIG SCHEDULING PROBLEM | ||||||||||||
Autor: |
IURI MARTINS SANTOS |
||||||||||||
Colaborador(es): |
LUCIANA DE SOUZA PESSOA - Orientador SILVIO HAMACHER - Coorientador |
||||||||||||
Catalogação: | 28/NOV/2018 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35723&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=35723&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.35723 | ||||||||||||
Resumo: | |||||||||||||
The offshore exploration and production (EandP) of Oil and Gas involves several complex and important operations and relies, mostly, in the use of rigs, a scarce and costly resource that oil companies need to properly plan and schedule. In the literature, this decision is called the Rig Scheduling Problem (RSP). However, there is not any study related to offshore wells and drilling activities with realistic objective functions. Aiming to fulfill this gap, this dissertation studies a rig scheduling problem of a real offshore company and proposes a matheuristic approach to determine a rigs fleet and schedule that minimizes the budget. Two mathematical models – one for rigs fleet minimization and another one that minimizes the rigs budget – and several heuristics – using local search (LS) and variable neighborhood descent (VND) algorithms with three neighborhood structures and also constructive methods – were developed and tested in two instances based on real data of the studied company. In the small instance, the programming model found slightly better solutions than the heuristic, despite requiring more computational effort. Nevertheless, in the large instance, the mathematical programming solutions present large gaps (over 11 percent) and an elevated
computational time (at least 12 hours), while the heuristics can find similar (or even better) solutions in a shorter time (minutes), having 70 of 156 heuristics outperformed the mathematical models. Last, the matheuristic combination of the simplest mathematical model with the heuristics has found the best known solutions (BKS) of the large instance with a moderate computational effort.
|
|||||||||||||
|