Título: | APPLYING GENETIC ALGORITHMS TO THE PRODUCTION SCHEDULING OF A PETROLEUM | ||||||||||||
Autor: |
MAYRON RODRIGUES DE ALMEIDA |
||||||||||||
Colaborador(es): |
SILVIO HAMACHER - Orientador |
||||||||||||
Catalogação: | 19/JUL/2001 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1740&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1740&idi=2 [es] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=1740&idi=4 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.1740 | ||||||||||||
Resumo: | |||||||||||||
The purpose of this dissertation is to develop a method,
based on Genetics Algorithms and Rule Base Systems, to
optimize the production scheduling of fuel oil and asphalt
area in a petroleum refinery. The refinery is a multi-
product plant, with two machine stages - one mixer and a
set of tanks - with no setup time and with resource
constrains in continuous operation. Two genetic algorithms
models were developed to establish the sequence and the lot-
size of all production shares. The first model proposed has
a direct representation of the production scheduling which
the time interval of scheduling is shared in one hour
discrete intervals. The second model proposed has a indirect
representation that need to be decoded in order to make the
real production scheduling. The Rule Base Systems were
developed to choice the tanks that receive the production
and the tanks that provide the demand of the several
consumer centers. A special mutation operator -
Neighborhood Mutation - was proposed to minimize the number
of changes in the production. A Multi-objective Fitness
Evaluation technique, based on a Energy Minimization
Method, was also incorporated to the Genetic Algorithm
models. The results obtained confirm that the proposed
Genetic Algorithm models, associated with the Multi-
objective Energy Minimization Method and the Neighborhood
Mutation, are able to solve the scheduling problem,
optimizing the refinery operational objectives.
|
|||||||||||||
|