Título: | ANÁLISE DE INCERTEZAS E REDUÇÃO DE CENÁRIOS EM ALOCAÇÃO DE RECURSOS DE TAREFAS DE SONDAS MARÍTIMAS: UMA ABORDAGEM DE MACHINE LEARNING | ||||||||||||
Autor: |
RACHEL MARTINS VENTRIGLIA |
||||||||||||
Colaborador(es): |
LEONARDO DOS SANTOS LOURENCO BASTOS - Orientador SILVIO HAMACHER - Coorientador |
||||||||||||
Catalogação: | 18/ABR/2024 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66487&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=66487&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.66487 | ||||||||||||
Resumo: | |||||||||||||
O planejamento de recursos materiais é uma parte importante do
gerenciamento da cadeia de suprimentos. As tarefas na cadeia de suprimentos
precisam de materiais e recursos para serem executadas e, portanto, alocar os
recursos corretamente é uma parte importante do planejamento de tarefas.
Especificamente, as tarefas de construção de poços submarinos requerem a
utilização de recursos, como sondas, e o planejamento do cronograma dessas
operações envolve o dimensionamento de diversos materiais e serviços necessários
para sua execução. Este estudo é motivado pelo planejamento de programação real
de uma grande empresa de Óleo e Gás que estima estocasticamente a demanda por
materiais e serviços devido às incertezas associadas às tarefas em suas datas de
início e durações. O cálculo da demanda varia de acordo com o cronograma atual
que a empresa possui e a um conjunto de regras que indicam condições de alocação,
parâmetros logísticos, condições de desembarque e dependências para alocar as
ferramentas e serviços necessários para cada tarefa e estimar sua quantidade e
quantos dias em que serão usados. Este conjunto de ferramentas e regras pode
mudar dependendo do usuário e de seu conhecimento operacional. Além disso, a
empresa utiliza um grande número de cenários, o que resulta em tempos
computacionais extremamente altos e impacta a tomada de decisões operacionais.
Nesse contexto, a redução de cenários poderia auxiliar a empresa no seu processo
de tomada de decisão. A metodologia proposta neste trabalho avalia e identifica
cenários representativos de incerteza nos cronogramas de planejamento estratégico
de sondas offshore, a fim de reduzir o número de cenários utilizados no cálculo da
demanda por ferramentas e serviços. Com a utilização de técnicas não
supervisionadas, como k-means e agrupamento hierárquico, foi identificado um
subconjunto com os cenários mais representativos para a redução de cenários. A
Distância de Wasserstein e a visualizações gráficas foram utilizadas para calcular a
representatividade dos cenários selecionados e encontrar o melhor subconjunto.
Além disso, o subconjunto de cenários proveniente da redução também foi utilizado
para analisar o impacto da redução no cálculo da demanda. O Clustering
Aglomerativo com Ward Linkage obteve os melhores resultados de clusterização e
representatividade, resultando em um subconjunto de redução de 782 cenários. Para
encontrar um conjunto mínimo representativo de cenários, foi utilizado o melhor
método de agrupamento, junto com a Distância de Wasserstein, e por fim obtido
um número de 343 cenários. Isto apresenta uma redução de 84 por cento no tempo de
execução do cálculo da demanda, com o erro maior de 11 por cento no cálculo da demanda.
|
|||||||||||||
|