Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MÉTODOS DE APOIO MULTICRITÉRIO À DECISÃO E MODELOS DE MACHINE LEARNING NA GESTÃO DE ESTOQUES: UM ESTUDO DE CASO EM UMA FERROVIA DE TRANSPORTE DE CARGAS
Autor: GUILHERME HENRIQUE DE PAULA VIDAL
Colaborador(es): LUIZ FELIPE RORIS RODRIGUEZ SCAVARDA DO CARMO - Orientador
RODRIGO GOYANNES GUSMAO CAIADO - Coorientador
Catalogação: 06/JUL/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53571&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53571&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53571
Resumo:
O mundo vive hoje uma era de transformação digital resultante da chamada indústria 4.0 ou quarta revolução industrial. Nesta fase, a tecnologia tem exercido um papel cada vez mais estratégico no desempenho das organizações. Estes avanços tecnológicos têm revolucionado o processo de tomada de decisão na gestão e operação de cadeias de suprimentos. Neste contexto, esta dissertação apresenta uma metodologia de apoio à decisão na gestão de estoques, que combina multi-criteria decision making (MCDM) e machine learning (ML). A princípio, é realizada uma revisão sistemática da literatura para analisar como estas duas abordagens são aplicadas na gestão de estoques. Os resultados são complementados com um scoping review abrangendo a previsão de demanda. Inicia-se então um estudo de caso, aplicado em uma ferrovia de transporte de cargas. É aplicado, inicialmente, o método MCDM combinado Fuzzy AHP Vikor para ranquear os stock keeping units (SKUs) em ordem de criticidade. O passo seguinte é a aplicação do método de ML combinado GA-ANN, artificial neural network com genetic algorithm, com o objetivo de realizar a previsão de demanda em um piloto com alguns dos itens mais críticos. A etapa final consiste em estruturar um dashboard gerencial, integrando os resultados das etapas anteriores. Dentre os resultados alcançados, a partir do modelo proposto, observa-se considerável melhora na performance da previsão de demanda dos SKUs selecionados. Além disso, a integração entre as abordagens e implementação em um dashboard gerencial permitiu o desenvolvimento de um modelo semiautomático de tomada de decisão na gestão de estoques.
Descrição: Arquivo:   
NA ÍNTEGRA PDF