Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: APLICAÇÃO DE BUSINESS ANALYTICS PARA SELEÇÃO DE INDICADORES E IDENTIFICAÇÃO DE SEUS RELACIONAMENTOS EM UM SISTEMA DE MENSURAÇÃO DE DESEMPENHO
Autor: ANDERSON DA SILVA RAMOS
Colaborador(es): FERNANDO LUIZ CYRINO OLIVEIRA - Orientador
CRISTINA MARCIA BARROS DE CASTRO - Coorientador
Catalogação: 10/SET/2020 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49354&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49354&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.49354
Resumo:
Os sistemas de mensuração de desempenho buscam acompanhar o alcance dos objetivos estratégicos a partir de um conjunto de indicadores que suportem os processos de tomada de decisão. Várias iniciativas, entretanto, têm se mostrado ineficazes devido à subjetividade no desdobramento desses objetivos em indicadores. Métodos de business analytics vêm sendo utilizados para auxiliar esse desdobramento via análise de dados, com maior geração de valor para as organizações. O presente trabalho apresenta a aplicação das técnicas de Random Forest e Bayesian Belief Network para, respectivamente, selecionar indicadores e mapear suas relações em um estudo prático numa empresa do setor de transporte ferroviário de cargas, com foco no suporte ao indicador de disponibilidade de locomotivas. Para o processo de seleção de variáveis, observou-se que o algoritmo Variable Selection Using Random Forest obteve o melhor desempenho em acurácia e tempo de processamento. Na elaboração do mapa estratégico, a combinação do algoritmo Tabu Search com o critério estatístico Bayesian Information Criteria levou à escolha de um arranjo parcimonioso em suas relações, aderente à expectativa inicial associada ao critério estatístico utilizado. Foi observado um significativo vínculo entre a disponibilidade de locomotivas e indicadores operacionais da empresa em estudo, revelando o potencial de influência do modelo operacional nos resultados da disponibilidade. Verifica-se a oportunidade de emprego de técnicas de séries temporais para a previsão de desempenho a partir dos relacionamentos entre indicadores, bem como para aperfeiçoar a fase de seleção de variáveis, com a identificação de possíveis defasagens existentes nesses relacionamentos.
Descrição: Arquivo:   
NA ÍNTEGRA PDF