Título: | MODELO DE PROGRAMAÇÃO MATEMÁTICA ESTOCÁSTICA PARA O PLANEJAMENTO ESTRATÉGICO DA CADEIA DE PETRÓLEO SOB INCERTEZA | ||||||||||||
Autor: |
JULIEN PIERRE CASTELLO BRANCO |
||||||||||||
Colaborador(es): |
SILVIO HAMACHER - Orientador |
||||||||||||
Catalogação: | 25/FEV/2019 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37127&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37127&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.37127 | ||||||||||||
Resumo: | |||||||||||||
O presente trabalho tem como foco o estudo do Sistema Petrobras, no que
tange o planejamento estratégico dos investimentos da Companhia, sob a ótica
da cadeia integrada do petróleo. A partir de um dos modelos matemáticos mais
utilizados (e há mais tempo) na empresa, diversas decisões estratégicas de suma
importância são suportadas, de modo a maximizar seu resultado operacional ao
longo de um horizonte de tempo da ordem de 10 (dez) anos. Com embasamento
na literatura atual, evoluções são propostas e testadas no modelo matemático.
Primeiramente são introduzidas técnicas de programação estocástica em dois
estágios, onde as decisões de investimento são representadas por variáveis de
primeiro estágio; e a operação de todo o sistema – desde o refino até a
comercialização do petróleo e derivados, passando por toda a questão logística –
passa a fazer parte do segundo estágio, após a realização / revelação dos
parâmetros estocásticos. Em um segundo passo, técnicas de decomposição são
aplicadas para contornar eventuais limitações geradas pelo grande porte atingido
pelo modelo, que cresce proporcionalmente ao número de cenários envolvidos
na otimização. Os resultados mostram que o modelo estocástico começa a
esbarrar nestas limitações a partir da resolução de problemas com mais de 30
cenários. Por outro lado, apesar do tempo computacional consideravelmente
maior, o modelo decomposto chegou a resolver até 80 cenários, nos testes
realizados.
|
|||||||||||||
|