Título: | SELEÇÃO DE CARTEIRAS DE ATIVOS FINANCEIROS VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION | ||||||||||||
Autor: |
JOAO GABRIEL FELIZARDO S SCHLITTLER |
||||||||||||
Colaborador(es): |
MARCOS CRAIZER - Orientador DAVI MICHEL VALLADAO - Orientador |
||||||||||||
Catalogação: | 07/JAN/2019 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36002&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36002&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36002 | ||||||||||||
Resumo: | |||||||||||||
Otimização de portfólio tradicionalmente assume ter conhecimento da
distribuição de probabilidade dos retornos ou pelo menos algum dos seus
momentos. No entanto, é sabido que a distribuição de probabilidade dos retornos
muda com frequência ao longo do tempo, tornando difícil a utilização
prática de modelos puramente estatísticos, que confiam indubitavelmente
em uma distribuição estimada. Em contrapartida, otimização robusta considera
um completo desconhecimento da distribuição dos retornos, e por
isto, buscam uma solução ótima para todas as realizações possíveis dentro
de um conjunto de incerteza dos retornos. Mais recentemente na literatura,
técnicas de distributionally robust optimization permitem lidar com
a ambiguidade com relação à distribuição dos retornos. No entanto essas
técnicas dependem da construção do conjunto de ambiguidade, ou seja, distribuições
de probabilidade a serem consideradas. Neste trabalho, propomos
a construção de conjuntos de ambiguidade poliédricos baseado somente em
uma amostra de retornos. Nestes conjuntos, as relações entre variáveis são
determinadas pelos dados de maneira não paramétrica, sendo assim livre
de possíveis erros de especificação de um modelo estocástico. Propomos um
algoritmo para construção do conjunto e, dado o conjunto, uma reformulação
computacionalmente tratável do problema de otimização de portfólio.
Experimentos numéricos mostram que uma melhor performance do modelo
em comparação com benchmarks selecionados.
|
|||||||||||||
|