Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ANÁLISE E PREVISÃO DE SÉRIES TEMPORAIS UTILIZANDO AMORTECIMENTO EXPONENCIAL COM MÚLTIPLOS CICLOS E TÉCNICAS DE SIMULAÇÃO NA PRODUÇÃO DE ENERGIA EÓLICA
Autor: MATHEUS FERREIRA DE BARROS
Colaborador(es): REINALDO CASTRO SOUZA - Orientador
FERNANDO LUIZ CYRINO OLIVEIRA - Coorientador
Catalogação: 17/MAI/2016 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26412&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26412&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26412
Resumo:
A presente dissertação se insere no contexto da energia eólica, que é a fonte de energia que mais cresce na matriz elétrica brasileira, segundo dados da Empresa de Pesquisa de Energia (EPE), com projeções para que esse crescimento se mantenha. Com isso, a principal motivação do presente trabalho é o fato de que desenvolver e aplicar métodos de previsão cada vez mais precisos para as variáveis determinantes na produção de energia eólica em um aerogerador, como a velocidade do vento, é de crucial importância para o planejamento da operação do sistema elétrico nacional. Logo, o objetivo principal do trabalho é adaptar e aplicar uma metodologia de previsão de séries temporais em um banco de dados formado por medições de velocidade de vento. A metodologia se constrói a partir da análise exploratória dos dados, onde pode se observar características importantes, como estacionariedade na média e uma estrutura sazonal complexa, que envolve um ciclo diário e uma sazonalidade mensal. Com isso, foi adaptado um modelo de amortecimento exponencial com múltiplos ciclos que incorpora simulação de Monte Carlo e decomposição da série através do método TBATS, para realizar as previsões. Como resultados e conclusões, é possível observar que modelo adaptado se mostrou adequado para tratar o problema proposto, quando comparado com os modelos de previsão estabelecidos pela literatura, resultando em um aumento na precisão das previsões realizadas.
Descrição: Arquivo:   
NA ÍNTEGRA PDF