Maxwell Para Simples Indexação

Título
[pt] IMPLANTAÇÃO E MONITORAMENTO DE MODELOS DE SISTEMAS DE APRENDIZADO DE MÁQUINA: STATUS QUO E PROBLEMAS

Título
[en] ML-ENABLED SYSTEMS MODEL DEPLOYMENT AND MONITORING: STATUS QUO AND PROBLEMS

Autor
[pt] EDUARDO ZIMELEWICZ

Vocabulário
[pt] APRENDIZADO DE MAQUINA

Vocabulário
[pt] SURVEY

Vocabulário
[pt] MONITORAMENTO

Vocabulário
[pt] IMPLANTACAO

Vocabulário
[en] MACHINE LEARNING

Vocabulário
[en] SURVEY

Vocabulário
[en] MONITORING

Vocabulário
[en] DEPLOYMENT

Resumo
[pt] [Contexto] Sistemas que incorporam modelos de aprendizado de máquina(ML), muitas vezes chamados de sistemas de software habilitados para ML, tornaram-se comuns. No entanto, as evidências empíricas sobre como os sistemas habilitados para ML são projetados na prática ainda são limitadas; isto é especialmente verdadeiro para atividades relacionadas à disseminação do modelo de ML. [Objetivo] Investigamos práticas industriais contemporâneas e problemas relacionados à disseminação de modelos de ML, com foco nas fases de implantação do modelo e no monitoramento dentro do ciclo de vida de ML. [Método] Realizamos uma pesquisa on-line baseada em questionário internacional para coletar informações de profissionais sobre como os sistemas habilitados para ML são projetados. Reunimos 188 respostas completas de 25 países. Analisamos o status quo e os problemas relatados nas fases de implantação e monitoramento do modelo. Realizamos análises estatísticas sobre práticas contemporâneas utilizando bootstrapping com intervalos de confiança e análises qualitativas sobre os problemas relatados envolvendo procedimentos de codificação aberta e axial. [Resultados] Os profissionais consideram as fases de implantação e monitoramento do modelo relevantes, mas também difíceis. No que diz respeito à implantação de modelos, os modelos são normalmente implantados como serviços separados, com adoção limitada dos princípios de MLOps. Os problemas relatados incluem dificuldades no projeto da arquitetura da infraestrutura para implantação de produção e integração de aplicativos legados. No que diz respeito ao monitoramento de modelos, muitos dos modelos em produção não são monitorados. Os principais aspectos monitorados são insumos, produtos e decisões. Os problemas relatados envolvem a ausência de práticas de monitoramento, a necessidade de criar ferramentas de monitoramento personalizadas e desafios na seleção de métricas adequadas. [Conclusão] Nossos resultados já ajudam a fornecer uma melhor compreensão das práticas e problemas adotados na prática que apoiam a pesquisa em implantação de ML e monitoramento de maneira orientada a problemas.

Resumo
[en] [Context] Systems that incorporate Machine Learning (ML) models, often referred to as ML-enabled systems, have become commonplace. However, empirical evidence on how ML-enabled systems are engineered in practice is still limited; this is especially true for activities surrounding ML model dissemination. [Goal] We investigate contemporary industrial practices and problems related to ML model dissemination, focusing on the model deployment and the monitoring ML life cycle phases. [Method] We conducted an international survey to gather practitioner insights on how ML-enabled systems are engineered. We gathered a total of 188 complete responses from 25 countries. We analyze the status quo and problems reported for the model deployment and monitoring phases. We analyzed contemporary practices using bootstrapping with confidence intervals and conducted qualitative analyses on the reported problems applying open and axial coding procedures. [Results] Practitioners perceive the model deployment and monitoring phases as relevant and difficult. With respect to model deployment, models are typically deployed as separate services, with limited adoption of MLOps principles. Reported problems include difficulties in designing the architecture of the infrastructure for production deployment and legacy application integration. Concerning model monitoring, many models in production are not monitored. The main monitored aspects are inputs, outputs, and decisions. Reported problems involve the absence of monitoring practices, the need to create custom monitoring tools, and the selection of suitable metrics. [Conclusion] Our results help provide a better understanding of the adopted practices and problems in practice and support guiding ML deployment and monitoring research in a problem-driven manner.

Orientador(es)
MARCOS KALINOWSKI

Banca
HELIO CORTES VIEIRA LOPES

Banca
MARCOS KALINOWSKI

Banca
DANIEL MENDEZ FERNANDEZ

Catalogação
2024-09-23

Apresentação
2024-06-14

Tipo
[pt] TEXTO

Formato
application/pdf

Idioma(s)
INGLÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68155@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=68155@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.68155


Arquivos do conteúdo
NA ÍNTEGRA PDF