Título
[en] ANALYSIS OF THE CONTRIBUTION OF CHARACTERISTICS ASSOCIATED WITH THE EVOLUTION OF DEATHS FROM COVID19 IN BRAZILIAN STATES USING SHAPLEY VALUES
Título
[pt] ANÁLISE DA CONTRIBUIÇÃO DAS CARACTERÍSTICAS ASSOCIADAS À EVOLUÇÃO DOS ÓBITOS POR COVID-19 NOS ESTADOS BRASILEIROS UTILIZANDO OS VALORES DE SHAPLEY
Autor
[pt] PAULO HENRIQUE COUTO SIMOES
Vocabulário
[pt] VALOR DE SHAPLEY
Vocabulário
[pt] XGBOOST
Vocabulário
[pt] COBERTURA VACINAL
Vocabulário
[pt] MEDIDA DE CONTENCAO
Vocabulário
[pt] COVID-19
Vocabulário
[en] SHAPLEY S VALUE
Vocabulário
[en] XGBOOST
Vocabulário
[en] VACCINATION COVERAGE
Vocabulário
[en] CONTAINMENT MEASURE
Vocabulário
[en] COVID-19
Resumo
[pt] Este trabalho propõe um método para hierarquizar a contribuição de
diferentes estratégias para conter a evolução da pandemia de COVID-19 em
diferentes estados do Brasil, nos períodos pré- e pós-vacinação. O método proposto
incluiu o aprendizado automático de modelos de regressão utilizando o algoritmo
de aprendizado de máquina XGBoost, e aplicou a teoria dos jogos cooperativos de
Shapley para quantificar a contribuição das características analisadas para a
variável-alvo. Para interpretar o modelo globalmente, foi usado o SHapley Additive
exPlanations (SHAP), que é um algoritmo baseado na teoria de Shapley. Os
resultados de avaliação do método apontaram a sua eficácia para quantificar a
contribuição de cada variável de forma robusta, e revelam que os percentuais de
cobertura vacinal de primeira e segunda dose, além do fechamento das escolas,
foram as medidas que tiveram maior contribuição na evolução do número de casos
e óbitos por COVID-19. A ponderação das variáveis pode ajudar os atores
responsáveis na elaboração de políticas públicas para minimizar os efeitos
socioeconômicos em suas regiões, dado que o Brasil é um país que possui extrema
desigualdade social.
Resumo
[en] This work proposes a method to rank the contribution of different
strategies to contain the evolution of the COVID-19 pandemic in different states of
Brazil, in the pre- and post-vaccination periods. The proposed method included the
automatic learning of regression models using the XGBoost machine learning
algorithm, and applied Shapley s cooperative game theory to quantify the
contribution of the analyzed characteristics to the target variable. To interpret the
model globally, the SHapley Additive exPlanations (SHAP) was used, which is an
algorithm based on Shapley s theory. The evaluation results point to its efficacy to
quantify the contribution of each variable in a robust way, and reveal that the
percentages of first and second dose vaccination coverage, in addition to the closing
of schools, were the measures that had the greatest contribution in the evolution of
the number of cases and deaths due to COVID-19. The weighting of variables can
help the actors responsible in the elaboration of public policies to minimize the
socioeconomic effects in their regions, since Brazil is a country that has extreme
social inequality.
Orientador(es)
PAULA MEDINA MACAIRA LOURO
Coorientador(es)
FERNANDA ARAUJO BAIAO AMORIM
Banca
FERNANDA ARAUJO BAIAO AMORIM
Banca
PAULA MEDINA MACAIRA LOURO
Banca
OTAVIO TAVARES RANZANI
Banca
VINICIUS LAYTER XAVIER
Catalogação
2022-09-27
Apresentação
2022-08-24
Tipo
[pt] TEXTO
Formato
application/pdf
Idioma(s)
PORTUGUÊS
Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60658@1
Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60658@2
Referência DOI
https://doi.org/10.17771/PUCRio.acad.60658
Arquivos do conteúdo
NA ÍNTEGRA PDF