$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: CORPORATE RATINGS GRADE PREDICTION
Autor: ANDRE SIH
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  CARLOS KUBRUSLY - ADVISOR
Nº do Conteudo: 9530
Catalogação:  15/02/2007 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9530@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9530@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.9530

Resumo:
The purpose of this thesis is to analyze and rank the relevancy of 18 variables to S&P corporate ratings grades assignment. Beyond, we predict (classify) the Corporate Grades into two groups - Investment or Speculative. To achieve this goal, we applied and compared linear and non-linear Statistics models and Machine Learning Techniques (Multiple Linear Regression, Linear Fisher´s Discriminant, Neural Networks MLP) and feature selection methods such as Principal Component Analysis (PCA), Correlation, Mutual Information (MI) and Mutual Information for Features Selection under Uniform Distribution MIFS-U). The 17 of the initial set of 18 variables are financial variables such as Net Income, Interest Expense and Market Capitalization but one was the corporation´s Sector. Combining linear and nonlinear models and a priori knowledge, we identified a subset of five features (Net Income, EBIT, Total Revenues, Market Capitalization and Sector) that together reached up to 94.32% of success rate for the S&P grade prediction.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
REFERENCES AND APPENDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui