$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: PREVISÃO DE CARGA EM SISTEMAS ELÉTRICOS DE POTÊNCIA POR REDES NEURAIS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): RICARDO SALEM ZEBULUM

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
Número do Conteúdo: 9514
Catalogação:  02/02/2007 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9514@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9514@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.9514

Resumo:
Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na área de previsão de carga elétrica. Nesta investigação foram utilizados dados reais de energia relativos ao sistema elétrico brasileiro. O trabalho consiste de quatro partes principais: um estudo sobre o problema de previsão de carga no contexto de sistemas elétricos de potência; o estudo e a modelagem das RNAs para previsão de carga; o desenvolvimento do ambiente de simulação; e o estudo de casos. O estudo sobre o problema de previsão de carga envolveu uma investigação sobre a importância da previsão de demanda de energia na área de sistemas elétricos de potência. Enfatizou-se a classificação dos diversos tipos de previsão de acordo com o seu horizonte, curto e longo prazo, bem como a análise das variáveis mais relevantes para a modelagem da carga elétrica. O estudo também consistiu da análise de vários projetos na área de previsão de carga, apresentando as metodologias mais utilizadas. O estudo e a modelagem de RNAs na previsão de carga envolveu um extenso estudo bibliográfico de diversas metodologias. Foram estudadas as arquiteturas e os algoritmos de aprendizado mais empregados. Constatou-se uma predominância da utilização do algoritmo de retropropagação (Backpropagation) nas aplicações de previsão de carga elétrica horária para curto prazo. A partir desse estudo, e utilizando o algoritmo de retropropagação, foram propostas diversas arquiteturas de RNAs de acordo com o tipo de previsão desejada. O desenvolvimento do ambiente de simulação foi implementado em linguagem C em estações de trabalho SUN. O pacote computacional engloba basicamente 3 módulos: um módulo de pré-processamento da série de carga para preparar os dados de entrada; um módulo de treinamento da Rede Neural para o aprendizado do comportamento da série; e um módulo de execução da Rede Neural para a previsão dos valores futuros da série. A construção de uma interface amigável para a execução do sistema de previsão, bem como a obtenção de um sistema portátil foram as metas principais para o desenvolvimento do simulador. O estudo de casos consistiu de um conjunto de implementações com o objetivo de testar o desempenho de um sistema de previsão baseado em Redes Neurais para dois horizontes distintos: previsão horária e previsão mensal. No primeiro caso, foram utilizados dados de energia da CEMIG (Estado de Minas Gerais) e LIGHT (Estado do Rio de Janeiro). No segundo caso, foram utilizados dados de energia de 32 companhias do setor elétrico brasileiro. Destaca-se que a previsão mensal faz parte de um projeto de interesse da ELETROBRÁS, contratado pelo CEPEL. Para ambos os casos, investigou-se a influência do horizonte de previsão e da época do ano no desempenho do sistema de previsão. Além disso, foram estudadas as variações do desempenho das Redes Neurais de acordo com a empresa de energia elétrica utilizada. A avaliação do desempenho foi feita através da análise das seguintes estatísticas de erro: MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Square Error) e U de Theil. O desempenho das RNAs foi comparado com o de outras técnicas de previsão, como os métodos de Holt-Winters e Box & Jenkins, obtendo-se resultados, em muitos casos, superiores.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF  
CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
CAPÍTULO 7  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui