$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: APLICAÇÃO DE MODELOS NÃO LINEARES EM NEGOCIAÇÃO AUTOMÁTICA NO MERCADO ACIONÁRIO BRASILEIRO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): THIAGO REZENDE PINTO

Colaborador(es):  ALVARO DE LIMA VEIGA FILHO - Orientador
JOEL MAURICIO CORREA DA ROSA - Coorientador
Número do Conteúdo: 9141
Catalogação:  16/10/2006 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9141@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9141@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.9141

Resumo:
Esta dissertação tem por objetivo comparar o desempenho de modelos não lineares de previsão de retornos em 10 ativos do mercado acionário brasileiro. Entre os modelos escolhidos, pode-se citar o STAR-Tree, que combina conceitos da metodologia STAR (Smooth Transition AutoRegression) e do algoritmo CART (Classification And Regression Trees), tendo como resultado final uma regressão com transição suave entre múltiplos regimes. A especificação do modelo é feita através de testes de hipótese do tipo Multiplicador de Lagrange que indicam o nó a ser dividido e a variável explicativa correspondente. A estimação dos parâmetros é feita pelo método de Mínimos Quadrados Não Lineares para determinar o valor dos parâmetros lineares e não lineares. Redes Neurais, modelos ARMAX (estes lineares) e ainda o método Naive também foram incluídos na análise. Os resultados das previsões foram avaliados a partir de medidas estatísticas e financeiras e se basearam em um negociador automático que informa o instante correto de assumir uma posição comprada ou vendida em cada ativo. Os melhores desempenhos foram alcançados pelas Redes Neurais, pelos modelos ARMAX e pela forma de previsão ARC (Adaptative Regime Combination) derivada da metodologia STAR-Tree, sendo ambos ainda superiores ao retorno das ações durante o período de teste

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui