XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ARTIFICIAL NEURAL NETWORKS ON INFERENTIAL MODELLING OF PROPERTIES OF PETROLEUM PRODUCTS Autor: GIL ROBERTO VIEIRA PINHEIRO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
MARCO AURELIO CAVALCANTI PACHECO - ADVISOR
ENRIQUE LUIS LIMA - CO-ADVISOR
Nº do Conteudo: 8786
Catalogação: 07/08/2006 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8786&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8786&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.8786
Resumo:
Título: ARTIFICIAL NEURAL NETWORKS ON INFERENTIAL MODELLING OF PROPERTIES OF PETROLEUM PRODUCTS Autor: GIL ROBERTO VIEIRA PINHEIRO
MARCO AURELIO CAVALCANTI PACHECO - ADVISOR
ENRIQUE LUIS LIMA - CO-ADVISOR
Nº do Conteudo: 8786
Catalogação: 07/08/2006 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8786&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8786&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.8786
Resumo:
This work investigates the use of Artificial Neural
Networks (ANN) on the inferential modelling of properties
of petroleum products. Inferential modelling aims to
provide a good estimation of chemical properties of
petroleum products (i.e: final boiling point, vapour
pressure). These properties can be determined by on-line
process analysers or laboratory analysis. However, these
systems provide neither systematically good results nor
the necessary frequency to allow control of the process in
real time. However if a good estimation of a property of
interest is available, it can be used to achieve the
control or the optimisation of production process.
This work is subdivided in four main sections: (1) a study
about the inference of properties of products in a
distillation column; (2) a study about the main methods
used on inferential modellind and data analysis, with
emphasis on ANN; (3) a systematic about development and
testing of inference models; (4) and a case study.
In the study about principal methods used on inferential
modelling involved a bibliographic reserch about the
linear regression techniques Multiple Linear Regression
(MLR), Principal Component Regression (PCR) and Partial
Least Squares (PLS), a semi empirical model and ANNs.
Although the main objective of this work was to evaluate
the ANNs perfonmance, the study of other methods was
important to compare the results. In addition to the many
modelling techniques, some other techniques of data
analysis were studied, like Principal Component Analysis
(PCA).
In the systematic about the development and testing of
models, the various problems encontered and the approach
used to develop and test the model were presented. An
environment of development and testing was also
implemented in order to provide a platform to produce and
test inferential models. The environment can work with all
models studied, and some important settings of the models
can also be modified. Many capabilities fo MATLAB software
were used on the environment.
For the development of the case studies, real data
gathered from refineries of Petrobras group were used.
Three distinct cases were analysed: the first and second
cases are models of kerosene (jet fuel) and diesel ASTM
distillation; the third is a model of the Liquefied
Petroleum Gas (LPG) 95% boil-off point. In all cases, the
influence of each input over the modelled variable was
analysed, using mainly the PCA technique. Many ANN
arquitetures were tested, comparing them with other
studied techniques. The developed ANN models achieved good
performance, with better results than the statistical
methods. It was also verified the influence of pre-
processing and statistical analysis on the success of the
modeling.
Chemical and Petrochemical process industries have used
ANNs in many areas. In the field of inferential modelling
of properties, the ANNs allow the accomplished of
inferential models in a broad and accurate way. It may be
used either for control in real time in single control
loops or as part of a multivariable controller.
Descrição | Arquivo |
COMPLETE |
PDF ![]() |