$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: BAYESIAN MODELS TO FORECAST MULTIVARIANTS SEASONAL FACTORS AND SOME APPLICATIONS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): REGINA SADOWNIK

Colaborador(es):  EMANUEL PIMENTEL BARBOSA - Orientador
REINALDO CASTRO SOUZA - Coorientador
Número do Conteúdo: 8612
Catalogação:  03/07/2006 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8612@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8612@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.8612

Resumo:
This thesis is essentially devoted to models for analysis and forecasting of vector time series, where the seasonal behavior is the main focus, and a Bayesian procedure of sequential estimation is adopted. The basic structure of the non-linear multivariate model, of seasonal growth multiplicative for time series, consists of a locally linear trend component for each individual series and a shared multiplicative seasonal component common to all marginal series. The procedure of sequential estimation is based on analytic transformations to obtain a conjugate analysis, representing a non-linear extension of the algorithm by Barbosa and Harrison (1992) for multivariate dynamic linear models. Details of the proposed procedure and of the implementation are shown, as well examples of the application of the method, with simulated and real data. For real data, the brazilian electricity demand values were chose. The forecasting methodology adopted by the energy companies is also present in this work.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
CHAPTER 6  PDF  
APPENDICES  PDF  
REFERENCES  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui