$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: REDES NEURAIS ARTIFICIAIS NA PREVISÃO DE SÉRIES TEMPORAIS
Autor: ANTONIO JORGE GOMES ABELEM
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR

Nº do Conteudo: 8489
Catalogação:  12/06/2006 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8489@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8489@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.8489

Resumo:
Esta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na previsão de séries temporais, em particular de séries financeiras, consideradas uma classe especial de séries temporais, caracteristicamente ruídos e sem periodicidade aparente. O trabalho envolve quatro partes principais: um estudo sobre redes neurais artificiais e séries temporais; a modelagem das RNAs para previsão de séries temporais; o desenvolvimento de um ambiente de simulação; e o estudo de caso. No estudo sobre Redes Neurais Artificiais e séries temporais fez-se um levantamento preliminar das aplicações de RNAs na previsão de séries. Constatou-se a predominância do uso do algoritmos de retropropagação do erro para o treinamento das redes, bem como dos modelos estatísticos de regressão, de médias móveis e de alisamento exponencial nas comparações com os resultados da rede. Na modelagem das RNAs de retropropagação do erro considerou-se três fatores determinantes no desempenho da rede: convergência, generalização e escalabilidade. Para o controle destes fatores usou-se mecanismos como; escolha da função de ativação dos neurônios - sigmóide ou tangente hiperbólica; escolha da função erro - MSE (Mean Square Error) ou MAD (Mean Absolutd Deviation); e escolha dos parâmetros de controle do gradiente descendente e do temapo de treinamento - taxa de aprendizado e termo de momento. Por fim, definiu-se a arquitetura da rede em função da técnica utilizada para a identificação de regularidades na série (windowing) e da otimização dos fatores indicadores de desempenho da rede. O ambiente de simulação foi desenvolvido em linguagem C e contém 3.600 linhas de códigos divididas em três módulos principais: interface com o usuário, simulação e funções secundárias. O módulo de interface com o usuário é responsável pela configuração e parametrização da rede, como também pela visualização gráfica dos resultados; módulo de simulação executa as fases de treinamento e testes das RNAs; o módulo de funções secundárias cuida do pré/pós-processamento dos dados, da manipulação de arquivos e dos cálculos dos métodos de avaliação empregados. No estudo de caso, as RNAs foram modeladas para fazer previsões da série do preço do ouro no mercado internacional. Foram feitas previsões univariadas single e multi-step e previsões multivariadas utilizando taxas de câmbio de moedas estrangeiras. Os métodos utilizandos para a avaliação do desempenho da rede foram: coeficiente U de Theil, MSE (Mean Square Error), NRMSE (Normalized Root Mean Square Error), POCID (Percentage Of Change In Direction), scattergram e comparação gráfica. Os resultados obtidos, além de avaliados com os métodos acima, foram comparados com o modelo de Box-Jenkins e comprovaram a superioridade das RNAs no tratamento de dados não-lineares e altamente ruidosos.

Descrição Arquivo
NA ÍNTEGRA  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui