$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: CONTROL PROBLEM SOLUTIONS BY FREQUENCY DEPENDENT BMIS AND LMIS
Autor: DECILIO DE MEDEIROS SALES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCOS AZEVEDO DA SILVEIRA - ADVISOR
GILBERTO OLIVEIRA CORREA - CO-ADVISOR

Nº do Conteudo: 8385
Catalogação:  29/05/2006 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8385@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8385@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.8385

Resumo:
In this thesis, it is proposed and analysed in terms of the global-convergence property a new algorithm for solving quadratic optimisation problems under either a BMI (bilinear matrix inequality) or a frequency-dependent LMI (linear matrix inequality) constraints. These problems are of special interest in the control literature a some very important control problems such as the H2/H(infinite) fixed-order controller, multiobjectives, H2 and H (infinite) robust performance analysis among others problems can be posed as problems of this kind for which does not still exist yet a reliable global convergent algorithm. Nowadays, approximate solutions to those problems are based upon grid and interpolation techniques as suggested by Paganini (1996) in the case of frequency- wise LMI constraints or branch and bound algorithms or branch and bound algorithms mainly and alternating LMIs as far as BMIs constraints are involved (Safonov, 1994). All of those approaches suffer, of course, from obvious numerical difficulties. In fact, those approaches were introduced as preliminary attempts in solving the problems just mentioned. The algorithm to presented here, which can be seen as a generalisation of an earlier algorithm proposed by Corrêa e Sales (1998) for solving standard feasibility LMIs problems, is a step forward in an attempt of handling difficulties not faced properly by those methodologies. In a broaden sense, the proposed algorithm solves the original problem (a problem subject to an infinite number of constraints is replaced by a single one properly chosen. It is worth noting that this basic idea was introduced by Lawson (1961) in a rather different context, namely, the problem of computing Tchebycheff approximations by means of sequences of weighted quadratic problems. It is pointed out here that in the case of quadratic problems under a BMI constraint (a nonconvex problem); it is proved that the sequence of auxiliary solutions generated by the algorithm converges to the global optimal solution of the original one. On the other hand, as for quadratic problems under a frequency-dependent LMI constraint (an infinite-dimensional problem) it is proved that the auxiliary cost-sequence values increases asymptotically and, If the weight updating sequence is bounded from above (a sufficient condition), the sequence of auxiliary solutions will converge to the optimal solution of the original problem as well. Finally, some applications to control problem are presented accompanied by some numerical examples.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
CHAPTER 6  PDF  
CHAPTER 7  PDF  
CHAPTER 8  PDF  
REFERENCES  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui