$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: MODELO DE SÉRIES TEMPORAIS COM COEFICIENTES NEURAIS PARA PROCESSOS NÃO LINEARES NA MÉDIA E VARIÂNCIA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MARIA LUIZA FERNANDES VELLOSO

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
CRISTIANO AUGUSTO COELHO FERNANDES - Orientador
MARCO AURELIO CAVALCANTI PACHECO - Orientador
Número do Conteúdo: 8103
Catalogação:  07/04/2006 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8103@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8103@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.8103

Resumo:
Esta tese apresenta uma nova classe de modelos não lineares inspirada no modelo ARN, apresentado por Mellem, 1997. Os modelos definidos nesta classe são aditivos com coeficientes variáveis modelados por redes neurais e, tanto a média quanto a variância condicionais, são modeladas explicitamente. Neste trabalho podem ser identificadas quatro partes principais: um estudo sobre os modelos mais comuns encontrados na literatura de séries temporais; um estudo sobre redes neurais, focalizando a rede backpropagation; a definição do modelo proposto e os métodos utilizados na estimação dos parâmetros e o estudo de casos. Modelos aditivos têm sido escolha preferencial na modelagem não linear: paramétrica ou não paramétrica, de média ou de variância condicional. Além disso, tanto a idéia de modelos de coeficientes variáveis quanto a de modelos híbridos. que reúnem paradigmas diferentes, não é novidade. Por esta razão, foi traçado um panorama dos modelos não lineares mais encontrados na literatura de séries temporais, focalizando-se naqueles que tinham relacionamento mais estreito com a classe de modelos proposta neste trabalho. No estudo sobre redes neurais, além da apresentação de seus conceitos básicos, analisou- se a rede backpropagation, ponto de partida para a modelagem dos coeficientes variáveis. Esta escolha deveu- se à constatação da predominância e constância no uso desta rede, ou de suas variantes, nos estudos e aplicações em séries temporais. Demonstrou-se que os modelos propostos são aproximadores universais e podem ser utilizados para modelar a variância condicional de uma série temporal. Foram desenvolvidos algoritmos, a partir dos métodos de mínimos quadrados e de máxima verossimilhança, para a estimação dos pesos, através da adaptação do algoritmo de backpropagation à esta nova classe de modelos. Embora tenham sido sugeridos outros algoritmos de otimização, este mostrou-se suficientemente apropriado para os casos testados neste trabalho. O estudo de casos foi dividido em duas partes: testes com séries sintéticas e testes com séries reais. Estas últimas, normalmente, utilizadas como benchmarking por analistas de séries temporais não lineares. Para auxiliar na identificação das variáveis do modelo, foram utilizadas regressões de lag não paramétricas. Os resultados obtidos foram comparados com outras modelagens e foram superiores ou, no mínimo, equivalentes. Além disso, é mostrado que o modelo híbrido proposto engloba vários destes outros modelos.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF  
CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
APÊNDICES  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui