$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: PROBABILISTIC PORE PRESSURE PREDICTION IN RESERVOIR ROCKS THROUGH COMPRESSIONAL AND SHEAR VELOCITIES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): BRUNO BROESIGKE HOLZBERG

Colaborador(es):  SERGIO AUGUSTO BARRETO DA FONTOURA - Orientador
Número do Conteúdo: 7987
Catalogação:  24/03/2006 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7987@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7987@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7987

Resumo:
This work proposes a method for pore pressure prediction in reservoir rocks through compressional- and shear-velocity data (seismic attributes). In the method, the attributes are considered observations of a physic system, which behavior depends on a several not-observable parameters, where the pore pressure is only one of these parameters. To estimate the pore pressure, a Bayesian inversion approach is adopted. Through the use of a likelihood function, settled through a calibrated rock physics model, and through the Bayes theorem, the a priori information about the not-observable parameters (fluid and rock parameters and stress state) is combined with the seismic attributes, inferring probabilistically the pore pressure. Due the non-linearity of the problem, and due the uncertainties analysis demanding, an algorithm based on Monte Carlo simulations (a special case of the Metropolis- Hastings algorithm) is used to solve the inverse problem. The application of the proposed method is simulated through some synthetic examples. It is shown that a successfully pore pressure prediction in reservoir rocks depends on a set of factors, as how sensitive are the rock velocities to pore pressure changes, the a priori information about rock and fluid parameters and the uncertainties associates to the seismic attributes. Since the current methods for pore pressure prediction use exclusively the attribute compressional velocity V(p), the contribution of the attribute shear velocity V(s) on prediction is evaluated. In a poorly consolidated rock scenario (or in sands), the V(s) data, even with great uncertainties associated, can significantly contribute to a better pore pressure prediction. In a consolidated rock scenario, the uncertainties associated to pore pressure estimates are higher, and the s V data does not contribute to pore pressure prediction as it contributes in a poorly consolidated rock scenario.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
CHAPTER 7  PDF
CHAPTER 8  PDF
CHAPTER 9  PDF
REFERENCES AND ANNEX  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui