$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: A SHORT TERM LOAD FORECASTING MODEL COMBINING STATISTICAL AND COMPUTATIONAL INTELLIGENCE BASED MODELS
Autor: PLUTARCHO MARAVILHA LOURENCO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  REINALDO CASTRO SOUZA - ADVISOR
Nº do Conteudo: 7948
Catalogação:  17/03/2006 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7948@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7948@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7948

Resumo:
A new short-term load forecasting procedure is presented in this work, mixing techniques from the statistical models and those from computational intelligence (CI). It takes advantage of the CI techniques to establish the various load profiles and to process climatic variables in a linguistic way, and those from the statistical side, where the parameters and the order of the model are known and a spread measure is determined. The model is an adaptation of the method developed by P.C.Gupta, where CI techniques are added to the original method. The final model includes a classifer scheme, a predictive scheme and a procedure to improve the estimations. The classifier is implemented via an artificial neural network using a non-supervised learning moving average, exponential smoothing and ARMA type of models. A fuzzy logic procedure uses climating variables to improve the forecast.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
CHAPTER 6  PDF  
REFERENCES  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui