XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: UM MODELO DE PREVISÃO DE CURTO PRAZO DE CARGA ELÉTRICA COMBINANDO MÉTODOS ESTATÍSTICOS E INTELIGÊNCIA COMPUTACIONAL Autor: PLUTARCHO MARAVILHA LOURENCO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
REINALDO CASTRO SOUZA - ORIENTADOR
Nº do Conteudo: 7948
Catalogação: 17/03/2006 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7948@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7948@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7948
Resumo:
Título: UM MODELO DE PREVISÃO DE CURTO PRAZO DE CARGA ELÉTRICA COMBINANDO MÉTODOS ESTATÍSTICOS E INTELIGÊNCIA COMPUTACIONAL Autor: PLUTARCHO MARAVILHA LOURENCO
Nº do Conteudo: 7948
Catalogação: 17/03/2006 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7948@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7948@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7948
Resumo:
Este trabalho apresenta um novo modelo de previsão de
curto prazo de carga elétrica que reúne técnicas de
inteligência computacional e métodos estatísticos. Ele
permite aproveitar as vantagens de inteligência
computacional, relativas à criação de classes da série de
entrada e ao processamento de variáveis climáticas de
forma lingüística, e aquelas provenientes de modelos
estatísticos, onde os parâmetros e a ordem do modelo são
conhecidos e o intervalo de confiança das previsões é
determinado. O modelo é uma extensão do método
desenvolvido por P.C. Gupta, onde são empregadas técnicas
de inteligência computacional junto com o método original.
O modelo resultante compreende um classificador, um
previsor e um procedimento para aprimorar as estimativas.
O classificador é implementado por uma rede neural
artificial com aprendizado não-supervisionado, enquanto o
previsor emprega modelos estatísticos, combinando métodos
de média móvel, amortecimento exponencial e auto-
regressivo. Um sistema com lógica nebulosa utiliza
variáveis climáticas no aprimoramento da previsão obtida.
Descrição | Arquivo |
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS | |
CAPÍTULO 1 | |
CAPÍTULO 2 | |
CAPÍTULO 3 | |
CAPÍTULO 4 | |
CAPÍTULO 5 | |
CAPÍTULO 6 | |
REFERÊNCIAS BIBLIOGRÁFICAS |