$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: REACTIVE POWER FORECASTING
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ELIANE DA SILVA CHRISTO

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 7622
Catalogação:  28/12/2005 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7622@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7622@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7622

Resumo:
The forecasting of reactive and active power is an important tool in the monitoring of an Electrical Energy System. The main purpose of the present work is the development of a new short-term reactive power hourly forecast technique, which can be used at utility or substations levels. The proposed model, named A Hybrid Model for Reactive Forecasting, is divided in two stages. In the first stage, the active and reactive power data are classified by an unsupervised neural network - the Self-Organized Maps of Kohonen (SOM). In the second stage, a Autoregressive Distributed Lags Model (ADL) is used with its parameters estimated by an Iteratively Reweighted Least Square (IRLS). It also includes a correction lag structure for serial autocorrelation of the residuals as used in the Cochrane-Orcutt formulation. The short term reactive power forecasting is divided in in sample and out of sample. The out of sample forecast is applied to hourly periods until one month ahead. The proposed model is applied to real data of one substation and the results are compared with two other approaches, a conventional Dynamic Regression and a Feedforward Multi-layer Perceptron (MLP) Artificial Neural Network model.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
REFERENCES AND ANNEX  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui