$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: MODELAGEM DOS PREÇOS FUTUROS DE COMMODITIES: ABORDAGEM PELO FILTRO DE PARTÍCULAS
Autor: FERNANDO ANTONIO LUCENA AIUBE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  TARA KESHAR NANDA BAIDYA - ORIENTADOR
Nº do Conteudo: 7604
Catalogação:  21/12/2005 Liberação: 21/12/2005 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7604&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7604&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7604

Resumo:
A evolução dos conhecimentos em Finanças nas últimas três décadas foi rápido e vertiginoso. Hoje os mercados financeiros oferecem produtos sofisticados para investidores e empresas, e por outro lado, tais agentes demandam instrumentos confiáveis para atender suas necessidades em busca de maiores retornos e menores riscos. Todo esse desenvolvimento baseia-se fundamentalmente em metodologias de apreçamento de ativos. Grande parte deste conhecimento é oriundo dos trabalhos pioneiros de Black e Scholes (1973) e Merton (1973). Em síntese, estes trabalhos apoiaram-se em processos estocásticos para preços de ativos para apreçar um derivativo. A natureza do processo estocástico de evolução dos preços é o ponto central para a derivação dos modelos de apreçamento. A análise do comportamento dos preços das commodities possui duas grandes vertentes na literatura. A primeira trata os preços como decorrência de modelos de equilíbrio entre a oferta e a demanda. Estes modelos prosperaram pouco em termos de pesquisa. A outra vertente trata da análise da evolução dos preços baseando-se na série histórica propriamente dita. Esta linha de pesquisa está mais presente na literatura. Esta tese concentra-se nesta abordagem. As commodities possuem características particulares principalmente porque a formação de preços ocorre, via de regra, em mercados futuros. Isto faz com que muitos fatos estilizados não possam ser descritos por modelos de um fator (ou uma variável estocástica). Os fatores (variáveis estocásticas) ou variáveis de estado em muitas situações não são observáveis e necessitam ser estimados. Os modelos de preços futuros, escritos como função das variáveis de estado, recebe o nome de equação de observação. Quando as variáveis de estado são Gaussianas e a equação de observação é linear nos estados, o problema pode ser estimado pelo filtro de Kalman clássico. Se ocorrer a não linearidade, esta dificuldade pode ser contornada pelo filtro de Kalman estendido. Quando o problema é não Gaussiano a literatura usa outras metodologias (freqüentemente aproximações) que não o filtro de Kalman. Esta tese trata de processos estocásticos para preços de commodities propondo extensões aos modelos existentes na literatura. A derivação dos modelos é feita com o uso da transformada de Duffie e Kan (1996) em ambiente de não arbitragem. Algumas das extensões incluem modelos não Gaussianos. Esta tese investiga a estimação destes modelos pela metodologia denominada filtro de partículas. O filtro de partículas é um procedimento recursivo para integração, dentro da classe dos métodos seqüenciais de MonteCarlo. A proposta de utilização desta metodologia decorre do fato de que ela dispensa as condições de linearidade e Gaussianidade. Dentre as contribuições desta tese destacam-se as extensões dos processos estocásticos aplicáveis para quaisquer commodities e as análises de modelos não Gaussianos através da metodologia do filtro de partículas. Além disso, a pesquisa apresenta: (i) conclusões acerca dos modelos de dois fatores aplicados à série de preços da commodity petróleo; (ii) a análise da viabilidade do filtro de partículas mostrando que o erro obtido é próximo daquele do filtro de Kalman para problemas Gaussianos e a resposta obtida da estimação paramétrica é coerente com diversos trabalhos da literatura; (iii) análise da viabilidade operacional de implementação do filtro de partículas em termos do tempo computacional despendido nos processos de filtragem e estimação paramétrica. A tese conclui que o filtro de partículas, apesar ser computacionalmente intenso, é viável na prática face ao imenso desenvolvimento computacional. Ainda mais, por ser uma metodologia aplicável a problemas complexos de inferência, sua utilização em modelos cada vez mais sofisticados é muito promissora.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
CAPÍTULO 7  PDF
CAPÍTULO 8  PDF
CAPÍTUTO 9  PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui