$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: AUXÍLIO À ANÁLISE DE SÉRIES TEMPORAIS NÃO SAZONAIS USANDO REDES NEURAIS NEBULOSAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MARIA AUGUSTA SOARES MACHADO

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 7554
Catalogação:  01/12/2005 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7554@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7554@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7554

Resumo:
Observando a dificuldade de batimento (match) dos padrões de comportamento das funções de autocorrelação e de autocorrelação parcial teóricas com as respectivas funções e as autocorrelação e de autocorrelação parcial estimadas de uma séries temporal, aliada ao fato da dificuldade em definir um número em específico como delimitador inequívoco do que seja um lag significativo, tornam clara a dose de julgamento subjetivo a ser realizado por um especialista de análise de séries temporais na tomada de decisão sobre a estrutura de Box & Jenkins adequada a ser escolhida para modelar o processo estocástico sendo estudado. A matemática nebulosa permite a criação de sistemas de inferências nebulosas (inferência dedutiva) e representa o conhecimento de forma explícita, através de regras nebulosas, possibilitando, facilmente, o entendimento do sistema em estudo. Por outro lado, um modelo de redes neurais representa o conhecimento de forma implícita, adquirido através de exemplos (dados), possuindo excelente capacidade de generalização (inferência indutiva). Esta tese apresenta um sistema especialista composto de cinco redes neurais nebulosas do tipo retropropagação para o auxílio na análise de séries temporais não sazonais. O sistema indica ao usuário a estrutura mais adequada, dentre as estruturas AR(1), MA (1), AR(2), MA(2) e ARMA(1,1), tomando como base a menor distância Euclidiana entre os valores esperados e as saídas das redes neurais nebulosas.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF  
CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS  PDF  
ANEXOS  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui