$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: REGIME-SWITCHING MODELS: THRESHOLDS, SMOOTH TRANSITIONS, AND NEURAL NETWORKS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MARCELO CUNHA MEDEIROS

Colaborador(es):  ALVARO DE LIMA VEIGA FILHO - Orientador
Número do Conteúdo: 7549
Catalogação:  30/11/2005 Idioma(s):  ENGLISH - UNITED KINGDOM

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7549@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7549@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7549

Resumo:
The goal of this thesis is to propose more flexible regime-switching models combining the ideas from the SETAR, STAR, and ANN specifications. The models discussed in this thesis are models with multi-regimes and with the transition between regimes controlled by a linear combination of known variables. A modelling cycle procedure, based on the work of Teräsvirta and Lin (1993), Eitrheim and Teräsvirta (1996), and Rech, Teräsvirta and Tschernig (1999), consisting of the stages of model specification, parameter estimation, and model evaluation, is developed allowing the practitioner to choose among different alternatives during the modelling cycle. Monte-Carlo simulations and real applications are used to evaluate the performance of the techniques developed here and they suggested that the theory is useful and the proposed models thus seems to be an effective tool for the practicing time series analysts.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6 AND REFERENCES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui