$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: A SYSTEM TO FORECAST WEEKLY LOAD ELECTRICITY DATA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LAURA VALERIA LOPES DE ALMEIDA

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 7463
Catalogação:  09/11/2005 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7463@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7463@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7463

Resumo:
The goal of this dissertation is to present a quantitative study in time series of weekly electrical charge demand at the southeast region, particulary at Rio de Janeiro and São Paulo. In this work will be analysed the last 7 years, from january 1991 to november of 1997. The next time series were study: LIGHT, CERJ, CESP, CPFL and ELETROPAULO. Aimming to test the model against real data the concept of sample data was utilized in this dissertation. Another concept used in this work was outperformance. Outperformance is a Bayesian concept that involves the combination of two or more techniques in order to enchance the forecasting results. Artificial neural network and Box and Jenkins method are combined in this work. It is also interesting to notice that weight elimination, which is a new ANN technique, proved to be faster then classical back- propagation and yielded better results.

Descrição Arquivo
COVER, RESUMO, ABSTRACT, SUMMARY, THANKS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
ARQUIVO UNICO  PDF  
BIBLIOGRAPHY AND APPENDICE A  PDF  
ARQUIVO UNICO  PDF  
ARQUIVO UNICO  PDF  
ARQUIVO UNICO  PDF  
ARQUIVO UNICO  PDF  
ARQUIVO UNICO  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui