$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: NEURAL NETWORK AND DYNAMIC REGRESSION: A HYBRID MODEL TO FORECAST THE SHORT TERM DEMAND OF PETROL IN BRAZIL
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ALEXANDRE ZANINI

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 7457
Catalogação:  08/11/2005 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7457@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7457@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7457

Resumo:
In this dissertation a short term model to forecast automotive gasoline demand in Brazil is proposed. From the methodology point of view, data is analyzed and a model using a bottom-up strategy is developed. In other words, a simple model is improved step by step until a proper model that sits well the reality is found. Departuring from a univariate model it ends up in a neural network formulation, passing through dynamic regression models. The models obtained in this scheme are compared according to some criterion, mainly forecast accuracy. We conclude, that the efficiency of putting together classical statistics models (such as Box & Jenkins and dynamic regression) and neural networks improve the forecasting results. This results is highly desirable in modeling time series and, particularly, to the short term forecast of automotive gasoline, object of this dissertation.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui