$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: TEMPORAL NEURAL NETWORKS FOR TREATING TIME VARIANT SERIES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): CLAVER PARI SOTO

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
MARCO AURELIO CAVALCANTI PACHECO - Orientador
Número do Conteúdo: 7437
Catalogação:  07/11/2005 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7437@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7437@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7437

Resumo:
This dissertation investigates the development of Artificial Neural Network (ANN) in the solution of problems where the patterns presented to the network have a temporary relationship to each other, such as time series forecast and voice processing. Temporary ANN considers the time in its operation, incorporating memory of short period distributed in the network in all the hidden neurons and in the output neurons in some cases. This class of network in better used to represent the temporary nature of the dynamic systems. In contrast, Static ANN has a structure adapted for tasks of pattern recognition, classification and another static or stationary problems, achieving great success in several applications. Considered an universal approximator, Static ANN has also been used in applications of dynamic systems, through some artifices in the input of the network and through statistical data pre- processings. The objective of this work is, therefore to study the theory and evaluate the performance of Temporal ANN, in comparison with Static ANN, in applications of dynamics systems. The development of this research involved 3 main stages: bibliographical research of the methodologies developed for Temporal ANN; selection and implementation of the models for the evaluation of these networks; and case studies. The bibliographical research allowed to compile and to classify the main on Temporal ANN, Typically, these network was selected, where the synapses are filters FIR (Finite-duration Impulse Response) that represent the temporary nature of the problem. The FIR network has been selected since it includes practically all other methods of its class, presenting a more formal mathematical model. On the second group, the Elman recurrent network was considered, that presents global feedback of each neuron in the hidden layer to all other neurons in this layer. In the case studies the network selected have been tested in two application: forecast of time series and digital signal processing. In the case of forecast, result of electric energy consumption time series prediction were compared with the result found in the literature such as Holt-Winters, Box & Jenkins and Static ANN methods. In the case of the application of processing where the comparisons were made with the results presented by the standard neural filter, made of a multilayer feed-forward network with the back propagation learning algorithm. This work showed in practice that Temporal ANN captures the characteristics of the temporary processes in a more efficient way that Static ANN and other methods, being able to learn the non stationary behavior of the temporary series directly. The results showed that the FIR neural network and de Elman network learned better the complexity of the voice signals.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
CHAPTER 6  PDF  
CHAPTER 7 AND REFERENCES  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui