$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: APOIO À SÍNTESE DE MODELOS ESTRUTURAIS DE SOFTWARE ORIENTADO A OBJETOS UTILIZANDO ALGORITMOS GENÉTICOS CO-EVOLUCIONÁRIOS
Autor: THIAGO SOUZA MENDES GUIMARAES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
Nº do Conteudo: 7337
Catalogação:  25/10/2005 Liberação: 25/10/2005 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7337&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7337&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.7337

Resumo:
Esta dissertação investiga o uso de Algoritmos Genéticos Co-evolucionários na automatização do processo de desenvolvimento de Sistemas de Software Orientados a Objetos. A qualidade final do software depende principalmente da qualidade da modelagem desenvolvida para o mesmo. Durante a fase de modelagem, diversos modelos são desenvolvidos antecipando diversas visões do produto final, e possibilitando a avaliação do software antes mesmo que ele seja implementado. A síntese de um modelo de software pode, portanto, ser vista como um problema de otimização onde se busca uma melhor configuração entre os elementos contemplados pelo paradigma de orientação a objetos, como classes, métodos e atributos, que atenda a critérios de qualidade de design. O objetivo do trabalho foi estudar uma forma de sintetizar modelagens de maior qualidade através da evolução por Algoritmos Genéticos Co- evolucionários. Para avaliar a modelagem do software, foram investigadas métricas de qualidade de software tais como: Reutilização, Flexibilidade, Inteligibilidade, Funcionalidade, Extensibilidade e Efetividade. Essas métricas foram aplicadas na função de avaliação, que por sua vez, foi definida objetivando a síntese de uma modelagem de software orientado a objetos com uma maior qualidade. Neste problema, deseja-se contemplar mais de um objetivo ao mesmo tempo. Para isso, foi utilizada a técnica de Pareto para problemas multi- objetivos. Os resultados obtidos foram comparados com modelagens produzidas por especialistas e as suas características analisadas. O desempenho do AG no processo de otimização foi comparado com o da busca aleatória e, em todos os casos, os resultados obtidos pelo modelo foram sempre superiores.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui