XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: DATA MINING APPLIED TO CUSTOMER RETENTION IN WIRELESS TELECOMMUNICATIONS Autor: JORGE BRANTES FERREIRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
MARCO AURELIO CAVALCANTI PACHECO - CO-ADVISOR
Nº do Conteudo: 7070
Catalogação: 16/09/2005 Liberação: 16/09/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7070&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7070&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7070
Resumo:
Título: DATA MINING APPLIED TO CUSTOMER RETENTION IN WIRELESS TELECOMMUNICATIONS Autor: JORGE BRANTES FERREIRA
MARCO AURELIO CAVALCANTI PACHECO - CO-ADVISOR
Nº do Conteudo: 7070
Catalogação: 16/09/2005 Liberação: 16/09/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7070&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7070&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.7070
Resumo:
The goal of this work is to propose a complete data mining
system for the
solution of customer retention problems, commonly found in
many industries.
Such a solution encompasses the accurate identification
among huge amounts of
data of those consumers who would most likely end their
relationship with the
firm, based on their historical behavior and individual
profile. Acting upon the
intelligence provided by a precise customer classification,
incentives and
retention actions should be put into practice to prevent or
minimize the losses of
valuable clients to competitors. Throughout the data mining
process designed
here, great care was given to the preparation and
representation of the data and
to input selection methods, in an effort to optimize the
performance of the
classification models. Various different classification
techniques have been
tested, with the objective of finding the one best suited
for the task at hand: to
pinpoint those customers who present clear risks of
abandoning the analyzed
company. Among the studied models were neural networks,
decision trees,
genetic algorithms, neuro-fuzzy systems and SVMs (Support
Vector Machines).
As a case study, the issue of churn (loss of customer to
a competitor) in the
Brazilian wireless telecommunications was tackled, due to
the availability of data.
A detailed study was made, identifying the causes,
consequences and details of
the business problem. As a conclusion, the great impact of
the implementation of
the proposed system in retention strategies of wireless
carriers is evaluated,
under the view of the profitability that would be generated
by its use.