$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC | MARC |



Título: UM ROBÔ AUTÔNOMO BÍPEDE PARA APRENDIZADO POR REFORÇO ON-LINE
Autor: LUIS CARLOS PARRA CAMACHO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  WOUTER CAARLS - ORIENTADOR
Nº do Conteudo: 67995
Catalogação:  12/09/2024 Liberação: 03/06/2026 Idioma(s):  INGLÊS - ESTADOS UNIDOS
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67995&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67995&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.67995

Resumo:
A aprendizagem por reforço, uma técnica influente para treinar sistemas inteligentes, ganhou destaque na academia e na indústria devido à sua capacidade de resolver problemas complexos sem modelos pré-existentes. No entanto, sua aplicação a sistemas do mundo real é desafiadora devido à sua complexidade causada por altas não linearidades, amostras limitadas e restrições. Consequentemente, a pesquisa nessa área tem se concentrado principalmente em simulação, onde os modelos podem ser facilmente testados e refinados. Neste trabalho, foi proposta uma estratégia de aprendizagem por reforço para um robô bípede do mundo real aprender o comportamento de caminhada do zero. Também é apresentado um desenho de sistema focado na redução de estresse e simplicidade, garantindo um desempenho robusto, incluindo uma placa de circuito impresso personalizada para o manuseio eficiente dos componentes elétricos. O software do sistema é dividido entre a placa do sistema mestre e o sistema baseado em ROS, permitindo a comunicação entre os componentes e resolvendo o problema de perda de dados e atraso na comunicação. A simulação do modelo do robô é desenvolvida na plataforma Mujoco, incorporando propriedades físicas e parâmetros ambientais. Os algoritmos DDPG, TD3 e SAC foram utilizados para aprendizado e avaliação da técnica de destilação de política para transferência de conhecimento para uma rede mais eficiente. Finalmente, foi avaliada a transferência do aprendizado para o mundo real apresentando um experimento preliminar de aprendizado do zero no mundo real. Os resultados demonstram a eficácia do projeto do sistema robótico e dos algoritmos de aprendizado, alcançando uma caminhada estável na simulação e um máximo de catorze passos na vida real com a destilação de política do algoritmo SAC.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui