$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: STATISTICAL BEHAVIOR OF SKEW PRODUCTS: SCHWARZIAN DERIVATIVE AND ARC-SINE LAWS
Autor: RAUL STEVEN RODRIGUEZ CHAVEZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  LORENZO JUSTINIANO DIAZ CASADO - ADVISOR
PABLO GUTIERREZ BARRIENTOS - CO-ADVISOR

Nº do Conteudo: 66996
Catalogação:  11/06/2024 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66996@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=66996@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.66996

Resumo:
We consider skew products over Bernoulli shifts, whose fibred dynamics is given by diffeomorphisms of the interval. We study the predictable and/or historical behavior, referring to convergence and/or non-convergence, of the Birkhoff average, respectively. We employ the Schwarzian derivative of the fiber maps and the arc-sine law to identify conditions under which these skew products exhibit these types of behavior. We identify distinct types of behavior according to the Schwarzian derivative. When the Schwarzian derivative is negative, the skew product has intermingled basins. Conversely, when the Schwarzian derivative is positive, the skew product has a physical measure. Finally, when the Schwarzian derivative is zero, the skew product has historical behavior. In the latter scenario, we establish a connection between historical behavior and the arc-sine law that allows us to obtain results in other settings independent of the sign of the Schwarzian derivative.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui