XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: NONLINEAR MODELS IN ASSESSMENT IN THE SOCIAL SCIENCES: ESTIMATION BY STOCHASTIC APPROXIMATION, A FREQUENTIST MCMC Autor: CARLOS ALBERTO QUADROS COIMBRA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
CRISTIANO AUGUSTO COELHO FERNANDES - ADVISOR
Nº do Conteudo: 6695
Catalogação: 19/07/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6695&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6695&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.6695
Resumo:
Título: NONLINEAR MODELS IN ASSESSMENT IN THE SOCIAL SCIENCES: ESTIMATION BY STOCHASTIC APPROXIMATION, A FREQUENTIST MCMC Autor: CARLOS ALBERTO QUADROS COIMBRA
Nº do Conteudo: 6695
Catalogação: 19/07/2005 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6695&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=6695&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.6695
Resumo:
This work presents a study of statistical models used for
assessment and
measurement in the social sciences. The main contributions
are: i ) a unified
description of how evaluation, assessment, and the theory
of measurement
evolved within several branches of science; ii ) a review
of estimation
methods currently employed in nonlinear models; iii ) a
general formulation
of the maximum likelihood estimation method; and
particularly, iv the
presentation of the stochastic approximation method for
estimation of non
linear statistical models in measurement and assessment.
Non linear models occurs frequently in the social sciences
where it is
important to model binary or ordinal response variables.
This work deals
with item response theory models, logistic regression
models and general
models with random components. The estimation of these
models has been
the subject of several recent simulation studies. One
cannot say there is a
best estimation method. The approximate methods are known
to produce
biased estimates, numerical integration methods and
bayesian methods can
present convergence problems in many cases. Stochastic
approximation
method is a maximum likelihood method that uses the
Robbins-Monro
algorithm to solve the score equation. As a stochastic
approximation method
it generates a Markov chain that converges to the desired
estimates and can
be considered a frequentist MCMC. A simulation study and a
comparative
estimation study show a good performance, the method
producing small
bias for the estimates, good precision, and very rare
convergence problems.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT AND SUMMARY | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
CHAPTER 7 |