$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: A FRAMEWORK FOR AUTOMATED VISUAL INSPECTION OF UNDERWATER PIPELINES
Autor: EVELYN CONCEICAO SANTOS BATISTA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  WOUTER CAARLS - ADVISOR
Nº do Conteudo: 65960
Catalogação:  30/01/2024 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65960@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=65960@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.65960

Resumo:
In aquatic environments, the traditional use of divers or manned underwater vehicles has been replaced by unmanned underwater vehicles (such as ROVs or AUVs). With advantages in terms of reducing safety risks, such as exposure to pressure, temperature or shortness of breath. In addition, they are able to access areas of extreme depth that were not possible for humans until then. These unmanned vehicles are widely used for inspections, such as those required for the decommissioning of oil platforms. In this type of inspection, it is necessary to analyze the conditions of the soil, the pipeline and, especially, if an ecosystem was created close to the pipeline. Most of the works carried out for the automation of these vehicles use different types of sensors and GPS to perform the perception of the environment. Due to the complexity of the navigation environment, different control and automation algorithms have been tested in this area. The interest of this work is to make the automaton take decisions through the analysis of visual events. This research method provides the advantage of cost reduction for the project, given that cameras have a lower price compared to sensors or GPS devices. The autonomous inspection task has several challenges: detecting the events, processing the images and making the decision to change the route in real time. It is a highly complex task and needs multiple algorithms working together to perform well. Artificial intelligence presents many algorithms to automate, such as those based on reinforcement learning, among others in the area of image detection and classification. This doctoral thesis consists of a study to create an advanced autonomous inspection system. This system is capable of performing inspections only by analyzing images from the AUV camera, using deep reinforcement learning, and novelty detection techniques. However, this framework can be adapted to many other inspection tasks. In this study, complex realistic environments were used, in which the agent has the challenge of reaching the object of interest in the best possible way so that it can classify the object. It is noteworthy, however, that the simulation environments utilized in this context exhibit a certain degree of simplicity, lacking features like marine currents or collision dynamics in their simulated scenarios. At the conclusion of this project, a Visual Inspection of Pipelines (VIP) framework was developed and tested, showcasing excellent results and illustrating the feasibility of reducing inspection time through the optimization of viewpoint planning. This type of approach, in addition to adding knowledge to the autonomous robot, means that underwater inspections require little pres- ence of a human being (human-in-the-loop), justifying the use of the techniques employed.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui