XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ASSESSING THE BENEFITS OF MLOPS FOR SUPERVISED ONLINE REGRESSION MACHINE LEARNING Autor: GABRIEL DE ARAUJO CARVALHO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARKUS ENDLER - ADVISOR
MARCOS KALINOWSKI - CO-ADVISOR
Nº do Conteudo: 64505
Catalogação: 30/10/2023 Liberação: 30/10/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.64505
Resumo:
Título: ASSESSING THE BENEFITS OF MLOPS FOR SUPERVISED ONLINE REGRESSION MACHINE LEARNING Autor: GABRIEL DE ARAUJO CARVALHO
MARCOS KALINOWSKI - CO-ADVISOR
Nº do Conteudo: 64505
Catalogação: 30/10/2023 Liberação: 30/10/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=64505&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.64505
Resumo:
Context: Machine Learning Operations (MLOps) has emerged as a set
of practices that combines development, testing, and operations to deploy and
maintain machine learning applications. Objective: In this dissertation, we
will assess the benefits and limitations of the use of MLOps principles in the
context of online supervised models, which are widely used in applications such
as weather forecasting, market trends, and risk identification. Method: We
applied two research methods to assess the benefits of MLOps for supervised
online machine learning applications: (i) developing a practical supervised
machine learning project to deepen the understanding of the problem and of
the MLOps principles usage possibilities; and (ii) two focus group discussions
on the benefits and limitations of using the MLOps principles with six
experienced machine learning developers. Results: The practical project
implemented a supervised regression machine learning application using KNN.
The application uses information on Rio de Janeiro s public bus line routes and
calculates the bus trip duration based on the trip departure time of the day
and trip direction. Due to the scope of the first version and given that it
was not deployed into production, we didn t feel the need to use the MLOps
principles we were expecting at first. Indeed, we identified the need for only
one principle, the versioning principle, to align versions of the code and the
data. The focus group revealed that machine learning developers believe that
the benefits of using MLOps principles are many but that they do not apply
to all the projects they worked on. The discussion brought up that most of
the benefits are related to avoiding error-prone manual steps, enabling it to
restore the application to a previous state, and having a robust continuous
automated deployment pipeline. Conclusions: It is important to balance the
trade-offs of investing time and effort in implementing the MLOps principles
considering the scope and needs of the project. According to the experts, this
investment tends to pay off for larger applications with continuous deployment
that require well-prepared automated processes. On the other hand, for initial
versions of machine learning applications, the effort taken into implementing
the principles might enlarge the scope of the project and increase the time
needed to deploy a first version to production.
Descrição | Arquivo |
COMPLETE |