XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: THE EFFECTIVENESS OF BILEVEL OPTIMIZATION IN LARGE-SCALE POWER SYSTEMS PROBLEMS: A BILEVEL OPTIMIZATION TOOLBOX, A FRAMEWORK FOR APPLICATION-DRIVEN LEARNING, AND A MARKET SIMULATOR Autor: JOAQUIM MASSET LACOMBE DIAS GARCIA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
ALEXANDRE STREET DE AGUIAR - ADVISOR
MARIO VEIGA FERRAZ PEREIRA - CO-ADVISOR
Nº do Conteudo: 61816
Catalogação: 25/01/2023 Liberação: 25/01/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61816&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61816&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.61816
Resumo:
Título: THE EFFECTIVENESS OF BILEVEL OPTIMIZATION IN LARGE-SCALE POWER SYSTEMS PROBLEMS: A BILEVEL OPTIMIZATION TOOLBOX, A FRAMEWORK FOR APPLICATION-DRIVEN LEARNING, AND A MARKET SIMULATOR Autor: JOAQUIM MASSET LACOMBE DIAS GARCIA
MARIO VEIGA FERRAZ PEREIRA - CO-ADVISOR
Nº do Conteudo: 61816
Catalogação: 25/01/2023 Liberação: 25/01/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61816&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61816&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.61816
Resumo:
Bilevel Optimization is an extremely powerful tool for modeling realistic
problems in multiple areas. On the other hand, Bilevel Optimization is known
to frequently lead to complex or intractable problems. In this thesis, we
present three works expanding the state of the art of bilevel optimization
and its intersection with power systems. First, we present BilevelJuMP, a
novel open-source package for bilevel optimization in the Julia language. The
package is an extension of the JuMP mathematical programming modeling
language, is very general, feature-complete, and presents unique functionality,
such as the modeling of lower-level cone programs. The software enables
users to model a variety of bilevel problems and solve them with advanced
techniques. As a consequence, it makes bilevel optimization widely accessible
to a much broader public. In the following two works, we develop specialized
methods to handle much model complex and very large-scale bilevel programs
arising from power systems applications. Second, we use bilevel programming
as the foundation to develop Application-Driven Learning, a new closed-loop
framework in which the processes of forecasting and decision-making are
merged and co-optimized. We describe the model mathematically as a bilevel
program, prove convergence results and describe exact and tailor-made heuristic
solution methods to handle very large-scale systems. The method is applied
to demand forecast and reserve allocation in power systems operation. Case
studies show very promising results with good quality solutions on realistic
systems with thousands of buses. Third, we propose a simulator to model
long-term bid-based hydro-thermal power markets. A multi-stage stochastic program is formulated to accommodate the dynamics inherent to hydropower
systems. However, the subproblems of each stage are bilevel programs in
order to model strategic agents. The simulator is scalable in terms of system
data, agents, scenarios, and stages being considered. We conclude the third
work with large-scale simulations with realistic data from the Brazilian power
system with 3 price maker agents, 1000 scenarios, and 60 monthly stages.
These three works show that although bilevel optimization is an extremely
challenging class of NP-hard problems, it is possible to develop effective
algorithms that lead to good-quality solutions.
Descrição | Arquivo |
COMPLETE |