$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: IDENTIFICAÇÃO DE HORIZONTES EM SÍSMICA USANDO REDE NEURAL CONVOLUCIONAL
Autor: MAYARA GOMES SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCELO GATTASS - ORIENTADOR
Nº do Conteudo: 61112
Catalogação:  07/11/2022 Liberação: 07/11/2022 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61112@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61112@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.61112

Resumo:
O petróleo e gás são importantes na economia mundial, utilizados como matéria-prima em vários produtos. Para a extração desses produtos é necessário realizar a caracterização dos reservatórios de hidrocarbonetos. A partir dessa caracterização são extraídos um volume com dados sísmicos da região de interesse. Esses dados são interpretados para identificação de várias características, como a classificação de fácies sísmicas, horizontes, falhas, e gás. A grande quantidade de dados do volume de sísmica, torna a interpretação manual cada vez mais desafiadora. Muitos pesquisadores da área de interpretação sísmica tem investido em métodos utilizando redes neurais. As redes neurais convolucionais (CNN) são muito utilizadas em problemas de visão computacional, e obtém ótimos resultados em muitos problemas com dados 2D. O presente trabalho tem como objetivo a aplicação de redes neurais convolucionais no mapeamento supervisionado de horizontes sísmicos. Avaliamos nossa proposta usando o bloco F3 com as anotações de fácies sísmicas. Os dados foram utilizados baseados em modelo de seção e patches. Na previsão de horizonte foram avaliadas as arquiteturas da ResUnet e DC-Unet. Como função de perda foram analisadas a Generalized Dice e a perda Focal Tversky. O método mostrou resultados promissores com a ResUnet e função de perda Focal Tversky, nos dados baseados em patches de 128x128, alcançando aproximadamente 56 por cento na métrica Dice. A implementação completa e as redes treinadas estão disponíveis em https://github.com/mayaragomys/seismic_horizons.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui