XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: PREDICTING DRY GAS SEALS RELIABILITY WITH MACHINE LEARNING TECHNIQUES DEVELOPED FROM SCARCE DATA Autor: MATHEUS HOFFMANN BRITO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
HELON VICENTE HULTMANN AYALA - ADVISOR
BRUNO DE BARROS MENDES KASSAR - CO-ADVISOR
Nº do Conteudo: 61107
Catalogação: 07/11/2022 Liberação: 07/11/2022 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61107&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61107&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.61107
Resumo:
Título: PREDICTING DRY GAS SEALS RELIABILITY WITH MACHINE LEARNING TECHNIQUES DEVELOPED FROM SCARCE DATA Autor: MATHEUS HOFFMANN BRITO
BRUNO DE BARROS MENDES KASSAR - CO-ADVISOR
Nº do Conteudo: 61107
Catalogação: 07/11/2022 Liberação: 07/11/2022 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61107&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61107&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.61107
Resumo:
The correct equipment operation in the Oil and Gas industry is
essential to reduce environmental, human, and financial losses. In this
scenario, dry gas seals (DGS) of centrifugal compressors were studied,
as they are identified as the most critical device due to the extent of
the potential damage caused by their failure. In this study, 31 regression
models available at Scikit-Learn were developed using machine learning
(ML) techniques. They were trained with a scarce dataset, created based
on a design of experiment technique, to replace numerical simulations
in predicting the operational reliability of DGSs. First, a model based
on Computational Fluid Dynamics (CFD) simulation was validated to
represent the gas flowing between the sealing faces, to enable the calculation
of the equipment’s operational reliability. Thus, the open-source CFD
software OpenFOAM was used together with the substance database of
the software REFPROP, to allow the user to define the gas mixture and
the evaluated operational conditions. Then, two case studies were carried
out following a proposed generic workflow. The first comprised determining
a regression model to estimate the reliability of a DGS whose mixture
composition (composed of methane, ethane, and octane) is fixed but its
operating conditions can vary. The second consisted of determining a more
robust regressive model, where both the mixture composition and the
operational conditions can vary. Finally, the feasibility of implementing both
models under realistic operating conditions was evaluated, based on the
infinity norm obtained for the prediction of the test set. The performances
achieved were 1.872 degrees Celsius and 6.951 degrees Celsius for the first and second case studies,
respectively.
Descrição | Arquivo |
COMPLETE |