$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: USE OF EYE-TRACKING DATA TO MODEL VISUAL BEHAVIOR IN EXPERT SYSTEMS
Autor: ABNER CARDOSO DA SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  ALBERTO BARBOSA RAPOSO - ADVISOR
GREIS FRANCY MIREYA SILVA CALPA - CO-ADVISOR

Nº do Conteudo: 60623
Catalogação:  22/09/2022 Liberação: 22/09/2022 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60623@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60623@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.60623

Resumo:
Eye-tracking makes it possible to track the position and direction of a person s gaze on some stimulus (e.g., images or videos). This technology allows us to identify events inherent to human vision, containing implicit information capable of revealing essential aspects of one s behavior during a given task. However, identifying these pieces of information is a complex task that requires a set of skills to interpret the eye-tracking data and relate it to domain-specific knowledge. In this context, one can use intelligent systems to couple the knowledge and experience of specialists with the responses from the eye-tracking device. Thus, the main objective of this work is to propose a methodology to create eye-tracking-based systems to improve the assessment of subjects during specific tasks, resulting in a model that can represent the specialist s knowledge over subjective aspects to automate this process. Therefore, the present work s use case is the evaluation of the relationship between visual behavior and efficiency in solving tests inspired by Raven s Progressive Matrices. Those tests are commonly used in psychology to measure intelligence and abstract reasoning through image visualization. We chose an approach based on fuzzy rules, as it allows us to represent knowledge in a more readable way to end-users. The model s rules were developed and validated alongside a specialist in psychology. The system was tested with data extracted from users and showed promising results. The findings and models obtained in this research may be used as a foundation for the development of more robust systems.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui