$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC | MARC |



Título: INTELLIGENT BIOMASS ESTIMATION IN PASTURES USING RGB-BASED VEGETATION INDICES FROM UAV IMAGERY
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LUCIANA DOS SANTOS NETTO DOS REYS

Colaborador(es):  EDUARDO COSTA DA SILVA - Orientador
ANTONIO CANDEA LEITE - Coorientador
Número do Conteúdo: 60132
Catalogação:  11/08/2022 Idioma(s):  ENGLISH - UNITED STATES

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.60132

Resumo:
The correct management of pastures in agricultural regions plays a fundamental role in the production itself, in the prevention of plant biomass waste and the release of greenhouse gases (GHG). In addition, it is necessary to avoid inappropriate movement of the herd between pastures, as this is a time-consuming process and can be stressful for the animal. The success of this management requires an efficient assessment of the plant resources. The studies developed for this purpose are directly related to the amount estimation of biomass in a specific region of the pasture, because, in practice, it is not carried out accurately, due to the difficulty of measurement throughout the field. This work aims to develop a low-cost biomass estimation methodology, based on regression models that correlate the most relevant input features for the application with the actual density of the plantation, measured in g/m2 . For the features, the height of the forage grass was measured and the vegetation indexes based on RGB were calculated from images of unmanned aerial vehicles (UAV). Linear, nonlinear regression (MNLR), artificial neural networks (ANN) based on multi-layer perceptron (MLP) and the combination of all models generated (stacking ensemble) were the methodologies tested in order to achieve the best correlation. Satisfactory results were achieved using models of neural networks with two layers and using stacking ensemble methodology, reaching a RMSE of 31.76 g/m2 , MAPE of 13.35 percent and R-Squared of 0.9. Therefore, the proposed methodology may become a promising and affordable solution for plant biomass estimation toward efficient and sustainable herd management.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui