XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: INTELLIGENT BIOMASS ESTIMATION IN PASTURES USING RGB-BASED VEGETATION INDICES FROM UAV IMAGERY Autor: LUCIANA DOS SANTOS NETTO DOS REYS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
EDUARDO COSTA DA SILVA - ADVISOR
ANTONIO CANDEA LEITE - CO-ADVISOR
Nº do Conteudo: 60132
Catalogação: 11/08/2022 Liberação: 08/06/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.60132
Resumo:
Título: INTELLIGENT BIOMASS ESTIMATION IN PASTURES USING RGB-BASED VEGETATION INDICES FROM UAV IMAGERY Autor: LUCIANA DOS SANTOS NETTO DOS REYS
ANTONIO CANDEA LEITE - CO-ADVISOR
Nº do Conteudo: 60132
Catalogação: 11/08/2022 Liberação: 08/06/2023 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60132@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.60132
Resumo:
The correct management of pastures in agricultural regions plays a
fundamental role in the production itself, in the prevention of plant biomass
waste and the release of greenhouse gases (GHG). In addition, it is necessary
to avoid inappropriate movement of the herd between pastures, as this is a
time-consuming process and can be stressful for the animal. The success of this
management requires an efficient assessment of the plant resources. The studies
developed for this purpose are directly related to the amount estimation of
biomass in a specific region of the pasture, because, in practice, it is not carried
out accurately, due to the difficulty of measurement throughout the field.
This work aims to develop a low-cost biomass estimation methodology, based
on regression models that correlate the most relevant input features for the
application with the actual density of the plantation, measured in g/m2
. For the
features, the height of the forage grass was measured and the vegetation indexes
based on RGB were calculated from images of unmanned aerial vehicles (UAV).
Linear, nonlinear regression (MNLR), artificial neural networks (ANN) based
on multi-layer perceptron (MLP) and the combination of all models generated
(stacking ensemble) were the methodologies tested in order to achieve the
best correlation. Satisfactory results were achieved using models of neural
networks with two layers and using stacking ensemble methodology, reaching a
RMSE of 31.76 g/m2
, MAPE of 13.35 percent and R-Squared of 0.9. Therefore, the
proposed methodology may become a promising and affordable solution for
plant biomass estimation toward efficient and sustainable herd management.
Descrição | Arquivo |
COMPLETE |