$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: A SUGGESTION FOR THE STRUCTURE IDENTIFICATION OF LINEAR AND NON LINEAR TIME SERIES BY THE USE OF NON PARAMETRIC REGRESSION
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ROSANE MARIA KIRCHNER

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
FLAVIO AUGUSTO ZIEGELMANN - Coorientador
Número do Conteúdo: 5921
Catalogação:  10/02/2005 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5921@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5921@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.5921

Resumo:
This paper suggests an approach for the identification of the structure of inear and non-linear time series through non-parametric estimation of the unknown curves in models of the type Y)=E(Yt|Xt =xt) +e , where Xt=(Yt-1,Yt-2,...,Yt- d). A traditional nonlinear parametric model assumes that the form of the function E(Yt,Xt) is known. The estimation process is global, that is, under the assumption of a linear function for instance, then the same line is used along the domain of the covariate. Such an approach may be inadequate in many cases, though. On the other hand, nonparametric regression estimation, allows more flexibility in the possible form of the unknown function, since the function itself can be estimated through a local kernel regression. By doing so, only points in the local neighborhood of the point Xt, where E(Yt|Xt =xt) is to be estimated, will influence this estimate. In other words, with kernel estimators, the unknown function will be estimated by local regression, where the nearest observations to the point where the curve is to be estimated will receive more weight and the farthest ones, a less weight. For the estimation of the unknown function, the smoothing parameter h (window) was chosen automatically based on the sample through minimization of residuals, using the criterion of cross-validation. After the estimation of the unknown function, the determination coefficient is calculated in order to verify the dependence of each lag. Under the proposed methodology, it was verified that the Lag Dependence Function (LDF) and the Partial Lag Dependence Function (PLDF) provide good approximations in the linear case to the function of autocorrelation (ACF) and partial function of autocorrelation (PACF) respectively, used in classical analysis of linear time series. The graphic representation is also very similar to those used in ACF and PACF. For the Partial Lag Dependence Function (PLDF) it becomes necessary to estimate multivariable functions. In this case, an additive model was used, whose estimate is computed through the backfitting method, according to Hastie and Tibshirani (1990). For the construction of confidence intervals, the bootstrap technique was used. The research was conducted to evaluate and compare the proposed methodology to traditional ones. The simulated time series were generated according to linear and nonlinear models. A series of one hundred observations was generated for each model. The approach was illustrated with the study of the structure of two time series of electricity demand of DEMEI- the city department of energy of Ijui, Rio Grande do Sul, Brazil and another of a concessionary of the Centro- Oeste region. We used as third example an economical series of Petrobras.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
CHAPTER 6  PDF  
CONCLUSION  PDF  
REFERENCES  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui