$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: UMA SUGESTÃO PARA IDENTIFICAÇÃO DA ESTRUTURA DE SÉRIES TEMPORAIS, LINEARES E NÃO LINEARES, UTILIZANDO REGRESSÃO NÃO PARAMÉTRICA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ROSANE MARIA KIRCHNER

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
FLAVIO AUGUSTO ZIEGELMANN - Coorientador
Número do Conteúdo: 5921
Catalogação:  10/02/2005 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5921@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=5921@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.5921

Resumo:
Esta pesquisa fundamenta-se na elaboração de uma metodologia para identificação da estrutura de séries temporais lineares e não lineares, baseada na estimação não paramétrica e semi-paramétrica de curvas em modelos do tipo Yt=E(Yt|Xt) +e, onde Xt=(Yt-1, Yt-2,...,Yt-d). Um modelo de regressão linear paramétrico tradicional assume que a forma da função E(Yt|Xt) é linear. O processo de estimação é global, isto é, caso a suposição seja, por exemplo, a de uma função linear, então a mesma reta é usada ao longo do domínio da covariável. Entretanto, tal abordagem pode ser inadequada em muitos casos. Já a abordagem não paramétrica, permite maior flexibilidade na possível forma da função desconhecida, sendo que ela pode ser estimada através de funções núcleo local. Desse modo, somente pontos na vizinhança local do ponto xt , onde se deseja estimar E(Yt|Xt=xt), influenciarão nessa estimativa. Isto é, através de estimadores núcleo, a função desconhecida será estimada através de uma regressão local, em que as observações mais próximas do ponto onde se deseja estimar a curva receberão um peso maior e as mais afastadas, um peso menor. Para estimação da função desconhecida, o parâmetro de suavização h (janela) foi escolhido automaticamente com base na amostra via minimização de resíduos, usando o critério de validação cruzada. Além desse critério, utilizamos intencionalmente valores fixos para o parâmetro h, que foram 0.1, 0.5, 0.8 e 1. Após a estimação da função desconhecida, calculamos o coeficiente de determinação para verificar a dependência de cada defasagem. Na metodologia proposta, verificamos que a função de dependência da defasagem (FDD) e a função de dependência parcial da defasagem (FDPD), fornecem boas aproximações no caso linear da função de autocorrelação (FAC) e da função de autocorrelação parcial (FACP), respectivamente, as quais são utilizadas na análise clássica de séries lineares. A representação gráfica também é muito semelhante àquelas usadas para FAC e FACP. Para a função de dependência parcial da defasagem (FDPD), necessitamos estimar funções multivariadas. Nesse caso, utilizamos um modelo aditivo, cuja estimação é feita através do método backfitting (Hastie e Tibshirani-1990). Para a construção dos intervalos de confiança, foi utilizada a técnica Bootstrap. Conduzimos o estudo de forma a avaliar e comparar a metodologia proposta com metodologias já existentes. As séries utilizadas para esta análise foram geradas de acordo com modelos lineares e não lineares. Para cada um dos modelos foi gerada uma série de 100 ou mais observações. Além dessas, também foi exemplificada com o estudo da estrutura de duas séries de demanda de energia elétrica, uma do DEMEI- Departamento Municipal de Energia de Ijuí, Rio Grande do Sul e outra de uma concessionária da região Centro-Oeste. Utilizamos como terceiro exemplo uma série econômica de ações da Petrobrás.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF  
CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
CONCLUSÃO  PDF  
REFERÊNCIAS BIBLIOGRÁFICAS  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui