$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: CHARACTERIZATION OF STRAIN-HARDENING CEMENT-BASED COMPOSITES: DEEP LEARNING, IN-SITU X-RAY MICROCT AND DIGITAL VOLUME CORRELATION
Autor: RENATA LORENZONI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SIDNEI PACIORNIK - ADVISOR
FLAVIO DE ANDRADE SILVA - CO-ADVISOR

Nº do Conteudo: 56833
Catalogação:  29/12/2021 Liberação: 29/11/2022 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56833@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56833@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.56833

Resumo:
Considering the importance of micro and mesoscale analyses to understand the macro behavior of materials, this work brings innovative solutions for analyzing 3D images obtained by X-ray micro-computed tomography (microCT). The studied material was the strain-hardening cement-based composites (SHCC), a fiber reinforced cementitious composite that achieves significant deformations through multiple cracks formation, resulting in a cementitious material with pseudo ductile features. The first challenge of this work was to recognize and quantify the constituent phases in the 3D images of SHCC obtained by microCT. Materials with complex structures may present images in which the internal phases cannot be distinguished by the classical thresholding technique, requiring the use of another technique such as segmentation by Deep Learning (DL). Therefore, this work used DL as a solution for this task. Then, the features of each phase could be correlated to the macro mechanical behavior of the material in in-situ microCT tests. Another modern method for analyzing 3D images used was the digital volume correlation (DVC). DVC is a technique that estimates full-field strain in 3D over the entire volume of the specimen by correlating imaging volumes of the specimen in unloaded and loaded states. Thus, the images obtained from tensile and compression in-situ tests could have their internal displacements measured and strain calculated. In summary, this work brought advances to the 3D image processing and analysis field, applied to cementitious materials, but which could also adapt for the analysis of various materials.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui