$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: UM MÉTODO DE CONTINUAÇÃO ESTRUTURADO PARA PROBLEMAS COM MÚLTIPLAS SOLUÇÕES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor: DIEGO SOARES MONTEIRO DA SILVA

Colaborador(es):  CARLOS TOMEI - Orientador
OTAVIO KAMINSKI DE OLIVEIRA - Coorientador
Número do Conteúdo: 56470
Catalogação:  07/12/2021 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56470@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=56470@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.56470

Resumo:
Seja F uma função definida de um espaço de Banach real X para um espaço de Banach real Y e g um ponto pertencente a Y. Descrevemos um algoritmo para calcular as soluções u da equação F de u igual a g. Inicialmente, o algoritmo parte de uma curva c no domínio, a qual é escolhida de modo a interceptar substancialmente o conjunto crítico de F. Calculamos através de métodos de continuação uma componente da imagem inversa de F de c e definimos essa componente de forma abstrata: grafo completamente espelhado. Claramente, os métodos de continuação padrão têm melhores chances de sucesso em diferentes pontos iniciais. Fornecemos argumentos geométricos para a abundância ocasional de soluções e uma busca estruturada dessas. Três exemplos são considerados detalhadamente. O primeiro é uma função do plano no plano, em que podemos validar os resultados com auxílio de um software. O segundo conjunto de exemplos é obtido a partir da discretização de um problema de Sturm-Liouville não linear com um número inesperado de soluções. Por último, calculamos as seis soluções aproximadas de um problema estudado por Solimini.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui