$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: GRASSMANIAN ANALYSIS AND THE JOHNSON-LINDENSTRAUSS THEOREM
Autor: MIGUEL ANGEL ORRILLO CUMPA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  CARLOS TOMEI - ADVISOR
Nº do Conteudo: 55839
Catalogação:  11/11/2021 Liberação: 11/11/2021 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55839@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55839@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.55839

Resumo:
Let V be a set of n points in the Euclidean space X of dimension d. The Johnson-Lindenstrauss theorem states that there is a projection between X a and Y, another Euclidean space of a smaller dimension k, with the property that images of points of X under projection do not differ by more that a multiplicative factor c arbitrarily close to 1. The theorem presents a relation among d, k and c, indicating the possibility of dramatic dimensional reduction of very faithful representations of V. The proof makes use of Grassmanians, the manifolds consisting of subspaces of dimension k in X. In the text, charts are presented, together with a measure which is homogeneous with respect to the natural action of the orthogonal group on the Grassmanian. The result follows by taking estimates using gaussians of certain integrals with a strong geometric flavor.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui