$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: TECHNIQUES FOR DETECTION OF BIAS IN DEMAND FORECASTING: PERFORMANCE COMPARISON
Autor: FELIPE SCHOEMER JARDIM
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  EUGENIO KAHN EPPRECHT - Orientador
Nº do Conteudo: 55757
Catalogação:  09/11/2021 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55757@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55757@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.55757

Resumo:
In a globalized world, in continuous transformation, changes in the demand pattern are increasingly frequent. If not rapidly detected, they can have a negative and persistent impact in the wellbeing of a business due to continuously poor quality sales forecasts, which begin to generate values systematically above or below the actual demand indicating the presence of bias. To avoid this happening, statistical techniques can be incorporated in a prediction process with the objective known as bias detection in demand forecasting. Considering this situation, the present dissertation compares, through simulation, the efficiency performance of the main existing formal techniques of monitoring demand forecasting models, with the view of bias detection. Six of such techniques are identified and analyzed in this work. Four are based on Tracking Signal Statistics and two are adapted from the Statistical Process Control approach. The demand forecasting models monitored by the techniques in question can be classified as structured time series, for a constant level or trend pattern, and using both the simple exponential smoothing and the Holt s methods. Three types of changes in the demand pattern - which result in biased prediction - are examined. The first one focus on simulated changes on the average level of various constant times series. The second type also considered various constant times series, but now simulating the appearance of different trends. And the third refers to simulate changes in trends in various times series with pre-established trends. Among the results attained, one stands out: the techniques based on Tracking Signal Statistics - when compares to other methods - showed superior performance insofar as efficient bias detection in demand forecasting.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui