$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: OIL REFINERY OPERATIONAL PLANNING UNDER UNCERTAINTY
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): GABRIELA PINTO RIBAS

Colaborador(es):  SILVIO HAMACHER - Orientador
Número do Conteúdo: 55670
Catalogação:  05/11/2021 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55670@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55670@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.55670

Resumo:
Oil companies make a great effort to maintain profitability and improve efficiency, especially given the uncertainties present in this business. Companies that intend to remain competitive need to plan their operations better and with greater safety. In light of these opportunities and challenges, this thesis proposes a stochastic approach to the refinery operational planning problem. In this sense, a two-stage nonlinear stochastic programming model (NLP) developed. The proposed model is intended to adequately represent nonlinear processes encountered in a refinery, such as chemical transformations and calculations of the properties of the oil derivatives. Due to the high level of complexity of the NLP problem formulated, five solution methods associated with major commercial solvers were evaluated. A methodology for generating scenarios and quality measures for scenarios tree were also defined to properly represent the uncertainties present in this problem. The stochastic approach proposed in the present study was evaluated based on actual data from a Brazilian refinery. The final results of this research should provide advances in the processes of refinery operational planning exploiting the technique of nonlinear programming (NLP) and new solvers available for NLP-type problems. Another objective was to generate contributions in the field of stochastic programming by defining quality measures for scenario trees that allow a better representation of uncertainties and, consequently, better use of the stochastic approach.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui