$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: ESTRATÉGIAS PARA GARANTIR VIABILIDADE E CONSISTÊNCIA TEMPORAL NO PLANEJAMENTO DA PRODUÇÃO DE PROCESSOS DE MANUFATURA DISCRETA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): DANIELLE DE MACEDO

Colaborador(es):  BRUNO FANZERES DOS SANTOS - Orientador
PAULA MEDINA MACAIRA LOURO - Coorientador
Número do Conteúdo: 55523
Catalogação:  28/10/2021 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55523@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=55523@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.55523

Resumo:
Tradicionalmente, em indústrias de produção de peças discretas, no nível tático do planejamento da produção, é calculado o plano mestre de produção (Master Production Scheduling – MPS), que estabelece a quantidade de cada bem a ser produzida por período. Com o MPS em mãos, a necessidade de matéria-prima é levantada e o requerimento de material é realizado levandose em consideração o lead time de chegada das peças, que está relacionado com o modal de transporte previamente definido pela empresa. Mais próximo da operação, o sequenciamento dos jobs é feito com o objetivo de atender ao planejamento do MPS. Normalmente, esses quatro problemas - definição do modal de transporte, elaboração do plano mestre de produção, definição do momento de compra de materiais e sequenciamento da produção - são tratados em momentos diferentes e, muitas vezes, de forma determinística. Neste trabalho é avaliado o impacto financeiro e operacional de realizar o planejamento de forma determinística e segregada. Em particular, avaliase: (i) o impacto da estocasticidade e co-otimização do planejamento da produção e das decisões de compra e (ii) a viabilidade do sequenciamento. Para (i) é proposto um modelo de otimização estocástica de dois estágios que co-otimiza as decisões de volume de produção, momentos de compra e modal de transporte. Para (ii) restrições de sequenciamento de jobs são adicionadas através de uma heurística e de um modelo de programação matemática. Avaliações empíricas são feitas por meio de dois experimentos numéricos com dados realistas de uma empresa do setor automobilístico. Para (i) observamos uma redução de custo de 7 por cento na operação para o ano de 2018 (ano do planejamento) e cerca de 3,5 por cento para 5000 cenários simulados (out-ofsample), comparando o modelo de dois estágios proposto com o procedimento normalmente adotado na indústria. Para (ii) também observamos uma redução de 8 por cento no custo de operação de 2018, e de 9,6 por cento para 50 cenários simulados (outof- sample), em relação ao modelo proposto em (i) e 13 por cento no custo de operação de 2018 e 15,6 por cento para 50 cenários simulados (out-of-sample), em comparação com o modelo típico da indústria.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui