$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: APLICAÇÃO E AVALIAÇÃO DO DESEMPENHO DE MÉTODOS DE APRENDIZADO PROFUNDO PARA CLASSIFICAÇÃO DE IMAGENS DE RADAR SAR (SYNTHETIC APERTURE RADAR) PARA MONITORAMENTO DE ÁREAS MARINHAS NA DETECÇÃO DE FEIÇÕES DE INTERESSE PARA A ÁREA DE ÓLEO E GÁS
Autor: WILLIAM ALBERTO RAMIREZ RUIZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCO AURELIO CAVALCANTI PACHECO - ORIENTADOR
PEDRO MARCO ACHANCCARAY DIAZ - COORIENTADOR

Nº do Conteudo: 54724
Catalogação:  15/09/2021 Liberação: 15/09/2021 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54724&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54724&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.54724

Resumo:
O estudo dos eventos naturais e dos gerados pela atividade humana no mar tem tido uma grande prioridade para o setor de petróleo, isso devido à possibilidade de ter um evento perigoso para o ambiente marinho ou a área de produção. Nesse contexto, o objetivo deste trabalho é a avaliação de abordagens baseadas em aprendizado profundo para a classificação de eventos no mar usando imagens de radar de abertura sintética na área de óleo e gás. Métodos baseados em aprendizado profundo têm mostrado um ótimo desempenho através do uso de camadas convolucionais, onde as características são extraídas automaticamente através da definição de um kernel e stride. As seguintes arquiteturas são avaliadas neste trabalho: Inception V3, Xception, Inception ResNet V2, MobileNet, VGG16 e Deep Attention sampling. A avaliação é feita em uma metodologia de classificação de eventos no mar usando duas bases de dados de imagens de radar: a primeira contém 10 eventos comumente presentes no oceano ártico, e a segunda descreve um derramamento de óleo presente na costa da Louisiana. Nos experimentos realizados se obteve os melhores resultados com as arquiteturas Deep Attention sampling as quais atingiram valores de f1-score e Recall de até 0.82 por cento e 0.87 por cento respectivamente, para a classe de interesse no conjunto de dados de derramamento de óleo. Para o conjuntode dados de eventos naturais no mar, um alto desempenho foi evidenciado para arquiteturas baseadas no uso de módulos de Inception, tendo pontuações mais altas de F1-score e Recall para a arquitetura Xception. Além disso, foi observado uma melhoria de até 10 por cento e 13 por cento nas métricas f1-score e Recall no uso da atenção, em relação à sua arquitetura base (VGG16), e 4 por cento respeito a outras arquiteturas baseadas em módulos Inception, isto para o conjunto de dados de eventos no mar, demonstrando as vantagens de usar amostragem com atenção.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui