$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: AUTOMATED SYNTHESIS OF OPTIMAL DECISION TREES FOR SMALL COMBINATORIAL OPTIMIZATION PROBLEMS
Autor: CLEBER OLIVEIRA DAMASCENO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  THIBAUT VICTOR GASTON VIDAL - ADVISOR
EDUARDO UCHOA BARBOZA - CO-ADVISOR

Nº do Conteudo: 54349
Catalogação:  24/08/2021 Liberação: 04/08/2022 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54349@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54349@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.54349

Resumo:
Classical complexity analysis for NP-hard problems is usually oriented to worst-case scenarios, considering only the asymptotic behavior. However, there are practical algorithms running in a reasonable time for many classic problems. Furthermore, there is evidence pointing towards polynomial algorithms in the linear decision tree model to solve these problems, although not explored much. In this work, we explore previous theoretical results. We show that the optimal solution for 0-1 combinatorial problems can be found by reducing these problems into a Nearest Neighbor Search over the set of corresponding Voronoi vertices. We use the hyperplanes delimiting these regions to systematically generate a decision tree that repeatedly splits the space until it can separate all solutions, guaranteeing an optimal answer. We run experiments to test the size limits for which we can build these trees for the cases of the 0-1 knapsack, weighted minimum cut, and symmetric traveling salesman. We manage to find the trees of these problems with sizes up to 10, 5, and 6, respectively. We also obtain the complete adjacency relations for the skeletons of the knapsack and traveling salesman polytopes up to size 10 and 7. Our approach consistently outperforms the enumeration method and the baseline methods for the weighted minimum cut and symmetric traveling salesman, providing optimal solutions within microseconds.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui